scholarly journals Ozone depletion in the interstitial air of the seasonal snowpack in northern Japan

Tellus B ◽  
2015 ◽  
Vol 67 (1) ◽  
pp. 24934 ◽  
Author(s):  
Momoko Nakayama ◽  
Chunmao Zhu ◽  
Jun Hirokawa ◽  
Tomohisa Irino ◽  
Hisayuki Yoshikawa-Inoue
2016 ◽  
Author(s):  
Le Cao ◽  
Ulrich Platt ◽  
Chenggang Wang ◽  
Nianwen Cao ◽  
Qing Qin

Abstract. The tropospheric ozone depletion events (ODEs) and the related enhancement of reactive bromine in the boundary layer were observed in the springtime of Arctic almost 40 years ago. It is found that various substrates in polar regions such as the snowpack are able to release bromine, which is responsible for the consumption of ozone in the boundary layer. In the present simulation, a snowpack module which represents the mass transfer between the ambient air and the snowpack is implemented in a box model, aiming to clarify the influences of the snowpack on ODEs and the associated bromine explosion in the ambient air as well as in the interstitial air of the snowpack. In the snowpack module, the processes including the deposition of bromine containing compounds onto the snowpack, the mass exchange between the snow interstitial air and snow particles, and the release of Br2 from the snowpack to the ambient air are parameterized by estimating the transfer resistances which an air parcel experiences when being transported through the boundary layer into the snowpack. The present model successfully captures the complete removal of ozone both in the boundary layer and in the snow interstitial air. The temporal and spatial distributions of bromine species such as Br2 are shown and compared with observations. By changing the properties of the snowpack, it is found that the size of snow grains, volume fraction of the liquid-like layer (LLL), and the rate of the mass exchange between the snow interstitial air and the snow particles are the critical parameters which determine the occurrence of ODEs. The simulation results show that a smaller size of the snow grains considerably accelerates the ozone depletion process. Moreover, the decrease of LLL volume fraction in snow grains is found to slow down the scavenging process of HOBr by the snow particles, which prohibits the occurrence of ODEs in the snowpack. In addition, according to the simulations with the modification of the snowpack thickness, the depletion of ozone in the ambient air is shown to be influenced more heavily by the bromine explosion occurring in the surface snow layers instead of the deep snow layers. The importance of each step in the mass transfer processes occurring between the boundary layer and the snowpack is identified by conducting a local concentration sensitivity analysis. It is shown that the snow chemistry occurring in the surface snow layers has a relatively larger impact on the depletion of ozone in the ambient air compared to that within the deep snow layers. Besides, during the period of the ozone depletion, the mixing ratio of ozone in the boundary layer is mostly influenced by the deposition of HOBr onto the surface snow layers and the release of Br2 from the snow layers close to the ground surface. In contrast to that, in the interstitial air of the surface snow layer, the uptake of HOBr by snow particles is indicated as the most dominant step for the ODE.


Sign in / Sign up

Export Citation Format

Share Document