Specification for electrical equipment of machine tools. General purpose and mass production machines and their electronic equipment

2015 ◽  
Author(s):  
E. Hoxha ◽  
D. Maierhofer ◽  
M.R.M Saade ◽  
A. Passer

Abstract Purpose A detailed assessment of the environmental impacts of the building requires a substantial amount of data that is time- and effort-consuming. However, limitation of the system boundary to certain materials and components can provide misleading impact calculation. In order to calculate the error gap between detailed and simplified assessments, the purpose of this article is to present a detailed calculation of the environmental impacts of the building by including in the system boundary, the technical, and electrical equipment. Method To that end, the environmental impacts of a laboratory and research building situated in Graz-Austria are assessed following the EN-15978 norm. Within the system boundaries of the study, the material and components of building fabric, technical, and electronic equipment for the building lifecycle stages of production, construction, replacement, operational energy and water, and end-of-life are considered. The input data regarding the quantity of materials is collected from the design and tendering documents, invoices, and from discussion with the head of the building’s construction site. Primary energy and global warming potential indicators are calculated on the basis of a functional unit of 1 m2 of energy reference area (ERA) per year, considering a reference building service life of 50 years. Results and discussion The primary energy indicator of the building is equal to 1698 MJ/m2ERA/year. The embodied impacts are found to be responsible for 28% of which 6.4% is due to technical and electronic equipment. Furthermore, the embodied impacts for the global warming potential, equal to 28.3 kg CO2e/m2ERA/year, are responsible for 73%. Together, technical and electrical equipment are the largest responsible aspects, accounting for 38% of the total impacts. Simplified and detailed result comparisons show a gap of 29% and 7.7% for global warming and primary energy indicators. These differences were from the embodied impacts and largely from the exclusion of electrical equipment from the study’s system boundary. Conclusions Technical and electrical equipment present a significant contribution to the overall environmental impacts of the building. Worthy of inclusion in the system boundary of the study, the environmental impacts of technical and electrical equipment must be calculated in detail or considered with a reliable ratio in the early design phase of the project. Further research is necessary to address the detailed impact calculation of the equipment and notably the minimization of their impacts.


2021 ◽  
Vol 2 (4) ◽  
pp. 137-145
Author(s):  
NGUYEN THI THU HUONG ◽  
◽  
O. N. LARIN ◽  
◽  

Today, in world practice, a rapid increase in the rate of generation of household and industrial waste is noticeable, and Vietnam, as a developing country, this problem is especially tangible. With the development of industry and technology, one of the most problematic industries in terms of waste generation is the electrical and electronic equipment industry. The products of this industry are tightly integrated into all other sectors of human life, whether it is production (refrigeration equipment, machine tools, computers, monitors, communications, etc.) or everyday life (household appliances, mobile phones, game consoles, smart appliances, etc.). This article provides an analysis of the current situation with the recycling of waste electrical and electronic equipment in Vietnam, and provides recommendations for solving this problem.


2020 ◽  
Vol 14 (4) ◽  
pp. 535-544
Author(s):  
Andreas Bretz ◽  
Eberhard Abele ◽  
Matthias Weigold

Abstract Reaming plays a crucial role in production to meet the high quality requirements of precision bore machining. It is either directly responsible for the final component quality or influences subsequent processes such as honing. The narrow tolerances are usually monitored by measuring random samples in mass production due to cost efficiency. Having a closer look at an exemplary process chain for the production of hydraulic valves shows the possibility to adapt the honing parameters which reduces processing time and costs. However, the bore straightness after the reaming process has to be known. In this paper an approach is presented which allows to record the bore straightness within the productive time. For this purpose, a sensory reaming system is developed. It can be used without additional components in the machine tool and thus integrated into existing machining processes. Cutting tests show that the system is able to measure the bore straightness as good as sensing probes used in machine tools.


Author(s):  
Paul Shore ◽  
Paul Morantz

This paper provides a perspective on the development of ultra-precision technologies: What drove their evolution and what do they now promise for the future as we face the consequences of consumption of the Earth’s finite resources? Improved application of measurement is introduced as a major enabler of mass production, and its resultant impact on wealth generation is considered. This paper identifies the ambitions of the defence, automotive and microelectronics sectors as important drivers of improved manufacturing accuracy capability and ever smaller feature creation. It then describes how science fields such as astronomy have presented significant precision engineering challenges, illustrating how these fields of science have achieved unprecedented levels of accuracy, sensitivity and sheer scale. Notwithstanding their importance to science understanding, many science-driven ultra-precision technologies became key enablers for wealth generation and other well-being issues. Specific ultra-precision machine tools important to major astronomy programmes are discussed, as well as the way in which subsequently evolved machine tools made at the beginning of the twenty-first century, now provide much wider benefits.


2013 ◽  
Vol 834-836 ◽  
pp. 133-137
Author(s):  
Ji Hong Zhang ◽  
Da Wei An

Various types of insulating materials in electrical equipment is not only widely used, but also play a crucial role to enhance the insulation of electrical equipment performance and to improve the quality of electrical equipment. Different devices require different types of electrical insulating materials reliability,and in order to improve the safety factor of electrical equipment, it is necessary to strengthen the study on reliability of electrical insulating materials.


Sign in / Sign up

Export Citation Format

Share Document