Analysis techniques for system reliability. Procedure for failure mode and effects analysis (FMEA)

Author(s):  
I. Österreicher ◽  
S. Eckl ◽  
B. Tippelt ◽  
S. Döring ◽  
R. Prang ◽  
...  

Abstract Depending on the field of application the ICs have to meet requirements that differ strongly from product to product, although they may be manufactured with similar technologies. In this paper a study of a failure mode is presented that occurs on chips which have passed all functional tests. Small differences in current consumption depending on the state of an applied pattern (delta Iddq measurement) are analyzed, although these differences are clearly within the usual specs. The challenge to apply the existing failure analysis techniques to these new fail modes is explained. The complete analysis flow from electrical test and Global Failure Localization to visualization is shown. The failure is localized by means of photon emission microscopy, further analyzed by Atomic Force Probing, and then visualized by SEM and TEM imaging.


Author(s):  
Anusha Krishna Murthy ◽  
Saikath Bhattacharya ◽  
Lance Fiondella

Most reliability models assume that components and systems experience one failure mode. Several systems such as hardware, however, are prone to more than one mode of failure. Past two-failure mode research derives equations to maximize reliability or minimize cost by identifying the optimal number of components. However, many if not all of these equations are derived from models that make the simplifying assumption that components fail in a statistically independent manner. In this paper, models to assess the impact of correlation on two-failure mode system reliability and cost are developed and corresponding expressions for reliability and cost optimal designs derived. Our illustrations demonstrate that, despite correlation, the approach identifies reliability and cost optimal designs.


Author(s):  
Muhammad Monzur Morshed ◽  
Esther Chen ◽  
Anita Madan

Abstract Dissimilarities of thermal expansion coefficient between chip and package materials results in stress and strain at the solder interconnect leading to fatigue failures. Underfill is used between chip and package to reduce the interfacial stress and hence increase reliability. In this work, four flipchip package test vehicles underwent thermal cycling to accelerate the stress and were investigated systematically with different failure analysis techniques to study their failure modes. The prevalent failure mode was observed to be at the corner area between the chip and package using different advanced failure analysis techniques. This work demonstrates the technical complexity of analyzing stress induced defects and provides insight into CPI-based material selection.


2013 ◽  
Vol 540 ◽  
pp. 11-19
Author(s):  
Xin Gao ◽  
Lei Wang ◽  
Tong Zhang

The structural reliability analysis is the widely accepted method for bridge safety assessment. Identification the subset of significant failure modes is the most important part of system reliability estimation. In this paper, a stage critical strength branch and bound algorithm is proposed for the failure mode identification of bridge systems. The innovative method is implemented in the combination with the finite element package ANSYS and the MATLAB procedure. The suggest method is applied to a concrete filled steel tubular (CFST) arch bridges. The results reveal various combinations of the failure modes in significantly reduced time and efforts in comparison to the previous permutation method. Additionally, the suggested method can be used for the verification of the system reliability with more specific predictions of the failure mode.


Sign in / Sign up

Export Citation Format

Share Document