Thermal performance of buildings. Transmission and ventilation heat transfer coefficients. Calculation method

2008 ◽  
1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1998 ◽  
Vol 120 (2) ◽  
pp. 376-385 ◽  
Author(s):  
G. J. Korotky ◽  
M. E. Taslim

Three staggered 90 deg rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface-averaged heat transfer coefficients and friction factors for ribs with rounded corners and those with sharp corners, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. For the sharp-corner ribs, the rib average heat transfer coefficient increased with blockage ratio. However, when the corners were rounded, the trend depended on the level of roundness. (b) High-blockage-ratio (e/Dh = 0.25) ribs were insensitive to the pitch-to-height ratio. For the other two blockage ratios, the pitch-to-height ratio of 5 produced the lowest heat transfer coefficient. Results of the other two pitch-to-height ratios were very close, with the results of S/e = 10 slightly higher than those of S/e = 8.5. (c) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients for all cases except that of the smallest blockage ratio with S/e of 5. In that position, for the rib geometries tested, while the sharp-corner rib average heat transfer coefficients increased with the blockage ratio, the trend of the round-corner ribs depended on the level of roundness, r/e. (d) Thermal performance decreased with the blockage ratio. While the smallest rib geometry at a pitch-to-height ratio of 10 had the highest thermal performance, thermal performance of high blockage ribs at a pitch-to-height ratio of 5 was the lowest. (e) The general effects of rounding were a decrease in heat transfer coefficient for the midstream ribs and an increase in heat transfer coefficient for ribs in the furthest upstream position.


2011 ◽  
Vol 492 ◽  
pp. 328-332 ◽  
Author(s):  
Zhi Ming Han ◽  
Yi Wang Bao ◽  
Wei Dong Wu ◽  
Zheng Quan Liu ◽  
Xiao Gen Liu ◽  
...  

Simulation analysis of thermal performance for vacuum glazing was conducted in this paper. The heat conduction through the support pillars and edge seal and the radiation between two glass sheets were considered. The heat conductance of residual gas in vacuum gap was ignored for a low pressure of less than 0.1Pa. Two pieces of vacuum glazing with sizes of 0.3 × 0.3 m and 1.0 × 1.0 m were simulated. In order to check the accuracy of simulations with specified mesh number, the thermal performance of a small central area (4mm×4mm) with a single pillar in the center was simulated using a graded mesh of 41×41×5 nodes. The heat transfer coefficients of this unit obtained from simulation and analytic prediction were 2.194Wm-2K-1and 2.257Wm-2K-1respectively, with a deviation of 2.79%. The three dimensional (3D) isotherms and two dimensional (2D) isotherms on the cold and hot surfaces of the specimens were also presented. For a validity of simulated results, a guarded hot box calorimeter was used to determine the experimental thermal performance of 1.0m×1.0m vacuum glazing. The overall heat transfer coefficients obtained from experiment and simulation were 2.55Wm-2K-1 and 2.47Wm-2K-1respectively, with a deviation of 3.14%.


Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of thirteen tests to measure the rib surface-averaged heat transfer coefficient, in a square duct roughened with staggered 90° ribs. To investigate the effects that blockage ratio, e/Dh, and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133. 0.167 and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5 and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hflor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1) the rib average heat transfer coefficient is much higher than that for the area between the ribs, 2) similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio, 3) a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested, 4) under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the mid-channel positions, 5) the upstream-most rib average heat transfer coefficients decreased with the blockage ratio, and 6) thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Author(s):  
M. E. Taslim ◽  
T. Li ◽  
D. M. Kercher

Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with angled ribs is on the average higher than that roughened with 90° ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in heat transfer coefficient on the roughened wall with high levels of heat transfer coefficient at one end of the rib and low levels at the other end. In an effort to basically double the area of high heat transfer coefficients, the angled rib is broken at the center to form a V-shape rib and tests are conducted to investigate the resulting heat transfer coefficients and friction factors. Three different square rib geometries, corresponding to blockage ratios of 0.083, 0.125 and 0.167, with a fixed pitch-to-height ratio of 10, mounted on two opposite walls of a square channel in a staggered configuration are tested in a stationary channel for 5000 < Re < 30000. Heat transfer coefficients, friction factors and thermal performances are compared with those of 90°, 45° and discrete angled ribs. The V-shape ribs are tested for both pointing upstream and downstream of the main flow. Test results show that: a) 90° ribs represent the lowest thermal performance, based on the same pumping power, and is essentially the same for the 2:1 change in blockage ratio, b) low blockage ratio (e/Dh =0.083) V-shape ribs pointing downstream produced the highest heat transfer enhancement and friction factors. Amongst all other geometries with blockage ratios of 0.125 and 0.167, 45° ribs showed the highest heat transfer enhancements with friction factors less than those of V-shape ribs, c) thermal performance of 45° ribs and the lowest blockage discrete ribs are among the highest of the geometries tested in this investigation, and, d) discrete angled ribs, although inferior to 45° and V-shape ribs, produce much higher heat transfer coefficients and lower friction factors compared to 90° ribs.


Author(s):  
Seok-Won Kang ◽  
Saeil Jeon ◽  
Debjyoti Banerjee

The thermal performance of nanofluids in microchannel of rectangular cross-section was experimentally investigated in this study. In the previous studies, a threshold nanoparticle concentration exists where the critical concentration separates the heat transfer performance of the nanofluid during a flow through microchannels. Thus, the emphasis of our study is to find the optimum concentration value of nanoparticles for enhancing the forced convective heat transfer coefficients. In this study, thin-film thermocouple array (TFTA) of K-Type (Chromel/ Alumel) was employed to measure the temperature profile on the heated surface in the microchannel (while the top and wall was sufficiently insulated). The TFTA deposited on a silicon wafer is bonded with a polymer substrate containing the molded microchannel. The microchannel was made using the Poly Di-Methyl Siloxane (PDMS). The mold for the microchannel in order to cure the PDMS onto it was fabricated using soft-lithography technique on an atomically stable silicon substrate. To assess the thermal performance of nanofluids in micro-channels, the temperature profiles in the heated bottom wall of the micro-channel was monitored using the TFTA which was then used to estimate the wall heat flux values. The concentration and size of the silica nanoparticles in the aqueous nanofluids are parametrically varied in this study (e.g. at weight concentrations of 0.5%, 0.1% and 0.2%). These parametric experiments were performed by varying the wall temperatures (e.g. 30, 50 and 70 °C) and flow rates (e.g. 5, 7 and 9 μl/min).


Author(s):  
M. E. Taslim ◽  
A. Lengkong

For high blockage ribs with large heat transfer areas, commonly used in small gas turbine blades, the rib heat transfer is a significant portion of the overall heat transfer in the cooling passages. Three staggered 45° rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface averaged heat transfer coefficients and friction factors for 45° ribs, and 90° ribs reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. b) Except for two cases corresponding to the highest blockage ribs mounted at pitch-to-height ratios of 8.5 and 10 for which the heat transfer results of 45° ribs were very close to those of 90° ribs, 45° ribs produced higher heat transfer coefficients than 90° ribs. c) At pitch-to-height ratios of 8.5 and 10, all 45° ribs produced lower friction factors than 90° ribs. However, when they were brought closer to each other (S/e=5), they produced higher friction factors than 90° ribs. d) Heat transfer coefficients for the two smaller rib geometries (e/Dh=0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. f) Rib thermal performance decreased with the rib blockage ratio. For both angles of attack, the smallest rib geometry in the midstream position and at a pitch-to-height ratio of 10 had the highest thermal performance, and the highest blockage rib in the furthest upstream position produced the lowest thermal performance.


1996 ◽  
Vol 118 (1) ◽  
pp. 20-28 ◽  
Author(s):  
M. E. Taslim ◽  
T. Li ◽  
D. M. Kercher

Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with angled ribs is on the average higher than that roughened with 90 deg ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in heat transfer coefficient on the roughened wall with high levels of heat transfer coefficient at one end of the rib and low levels at the other end. In an effort basically to double the area of high heat transfer coefficients, the angled rib is broken at the center to form a V-shaped rib, and tests are conducted to investigate the resulting heat transfer coefficients and friction factors. Three different square rib geometries, corresponding to blockage ratios of 0.083, 0.125, and 0.167, with a fixed pitch-to-height ratio of 10, mounted on two opposite walls of a square channel in a staggered configuration, are tested in a stationary channel for 5000 < Re < 30,000. Heat transfer coefficients, friction factors, and thermal performances are compared with those of 90 deg, 45 deg, and discrete angled ribs. The V-shaped ribs are tested for both pointing upstream and downstream of the main flow. Test results show that: (a) 90 deg ribs represent the lowest thermal performance, based on the same pumping power, and is essentially the same for the 2:1 change in blockage ratio, (b) low-blockage-ratio (e/Dh = 0.083) V-shaped ribs pointing downstream produced the highest heat transfer enhancement and friction factors. Among all other geometries with blockage ratios of 0.125 and 0.167, 45 deg ribs showed the highest heat transfer enhancements with friction factors less than those of V-shaped ribs, (c) thermal performance of 45 deg ribs and the lowest blockage discrete ribs are among the highest of the geometries tested in this investigation, and (d) discrete angled ribs, although inferior to 45 deg and V-shaped ribs, produce much higher heat transfer coefficients and lower friction factors compared to 90 deg ribs.


Sign in / Sign up

Export Citation Format

Share Document