Rib Heat Transfer Coefficient Measurements in a Rib-Roughened Square Passage

1998 ◽  
Vol 120 (2) ◽  
pp. 376-385 ◽  
Author(s):  
G. J. Korotky ◽  
M. E. Taslim

Three staggered 90 deg rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface-averaged heat transfer coefficients and friction factors for ribs with rounded corners and those with sharp corners, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. For the sharp-corner ribs, the rib average heat transfer coefficient increased with blockage ratio. However, when the corners were rounded, the trend depended on the level of roundness. (b) High-blockage-ratio (e/Dh = 0.25) ribs were insensitive to the pitch-to-height ratio. For the other two blockage ratios, the pitch-to-height ratio of 5 produced the lowest heat transfer coefficient. Results of the other two pitch-to-height ratios were very close, with the results of S/e = 10 slightly higher than those of S/e = 8.5. (c) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients for all cases except that of the smallest blockage ratio with S/e of 5. In that position, for the rib geometries tested, while the sharp-corner rib average heat transfer coefficients increased with the blockage ratio, the trend of the round-corner ribs depended on the level of roundness, r/e. (d) Thermal performance decreased with the blockage ratio. While the smallest rib geometry at a pitch-to-height ratio of 10 had the highest thermal performance, thermal performance of high blockage ribs at a pitch-to-height ratio of 5 was the lowest. (e) The general effects of rounding were a decrease in heat transfer coefficient for the midstream ribs and an increase in heat transfer coefficient for ribs in the furthest upstream position.

Author(s):  
G. J. Korotky ◽  
M. E. Taslim

Three staggered 90° rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested for pitch-to-height ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface averaged heat transfer coefficients and friction factors for ribs with rounded corners and those with sharp comers, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. For the sharp-corner ribs, the rib average heat transfer coefficient increased with blockage ratio. However, when the corners were rounded, the trend depended on the level of roundness. b) High blockage ratio (e/Dh=0.25) ribs were insensitive to the pitch-to-height ratio. For the other two blockage ratios, the pitch-to-height ratio of 5 produced the lowest heat transfer coefficient. Results of the other two pitch-to-height ratios were very close, with the results of S/e = 10 slightly higher than those of S/e=8.5. c) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients for all cases except that of the smallest blockage ratio with S/e of 5. In that position, for the rib geometries tested, while the sharp-comer rib average heat transfer coefficients increased with the blockage ratio, the trend of the round-corner ribs depended on the level of roundness, r/e. d) Thermal performance decreased with the blockage ratio. While the smallest rib geometry at a pitch-to-height ratio of 10 had the highest thermal performance, thermal performance of high blockage ribs at a pitch-to-height ratio of 5 was the lowest. e) The general effects of rounding were a decrease in heat transfer coefficient for the midstream ribs and an increase in heat transfer coefficient for ribs in the furthest upstream position.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of thirteen tests to measure the rib surface-averaged heat transfer coefficient, in a square duct roughened with staggered 90° ribs. To investigate the effects that blockage ratio, e/Dh, and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133. 0.167 and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5 and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hflor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1) the rib average heat transfer coefficient is much higher than that for the area between the ribs, 2) similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio, 3) a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested, 4) under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the mid-channel positions, 5) the upstream-most rib average heat transfer coefficients decreased with the blockage ratio, and 6) thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1969 ◽  
Vol 91 (4) ◽  
pp. 568-580 ◽  
Author(s):  
P. J. Hlavac ◽  
O. E. Dwyer ◽  
M. A. Helfant

An experimental study of heat transfer to mercury flowing in line through an unbaffled rod bundle was carried out. The “rods” were special electrical heaters whose claddings had different thicknesses and thermal conductivities. The experiments were carried out under a thermal boundary condition approaching that of uniform heat flux in all directions at the inner wall of the rod cladding. It was found that displacement of a rod from its symmetrical position can result in a large reduction in its average heat transfer coefficient. This reduction increases exponentially with the amount of displacement. For a given direction and amount of displacement, the reduction is little affected by variations in cladding thickness and conductivity but is affected considerably by flow rate. Not only does the displaced rod suffer a reduction in its own average heat transfer coefficient, but so do those toward which it is displaced. At the same time, the average coefficients of the rods from which it is displaced remain about the same. Thus the overall average coefficient of the group of affected rods goes down when a single rod is displaced.


2007 ◽  
Vol 2007 ◽  
pp. 1-11 ◽  
Author(s):  
M. E. Taslim ◽  
V. Nezym

Heat transfer coefficients in the cooling cavities of turbine airfoils are greatly enhanced by the presence of discrete ribs on the cavity walls. These ribs introduce two heat transfer enhancing features: a significant increase in heat transfer coefficient by promoting turbulence and mixing, and an increase in heat transfer area. Considerable amount of data are reported in open literature for the heat transfer coefficients both on the rib surface and on the floor area between the ribs. Many airfoil cooling design software tools, however, require an overall average heat transfer coefficient on a rib-roughened wall. Dealing with a complex flow circuit in conjunction with180∘bends, numerous film holes, trailing-edge slots, tip bleeds, crossover impingement, and a conjugate heat transfer problem; these tools are not often able to handle the geometric details of the rib-roughened surfaces or local variations in heat transfer coefficient on a rib-roughened wall. On the other hand, assigning an overall area-weighted average heat transfer coefficient based on the rib and floor area and their corresponding heat transfer coefficients will have the inherent error of assuming a 100% fin efficiency for the ribs, that is, assuming that rib surface temperature is the same as the rib base temperature. Depending on the rib geometry, this error could produce an overestimation of up to 10% in the evaluated rib-roughened wall heat transfer coefficient. In this paper, a correction factor is developed that can be applied to the overall area-weighted average heat transfer coefficient that, when applied to the projected rib-roughened cooling cavity walls, the net heat removal from the airfoil is the same as that of the rib-roughened wall. To develop this correction factor, the experimental results of heat transfer coefficients on the rib and on the surface area between the ribs are combined with about 400 numerical conduction models to determine an overall equivalent heat transfer coefficient that can be used in airfoil cooling design software. A well-known group method of data handling (GMDH) scheme was then utilized to develop a correlation that encompasses most pertinent parameters including the rib geometry, rib fin efficiency, and the rib and floor heat transfer coefficients.


1999 ◽  
Vol 121 (2) ◽  
pp. 272-280 ◽  
Author(s):  
M. E. Taslim ◽  
A. Lengkong

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of 45 deg, round-corner ribs. Three staggered rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel wall. Comparisons were made between the surface-averaged heat transfer coefficients and channel friction factors for sharp-and round-corner ribs and 45 versus 90 deg ribs, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the ribroughened region were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. (b) The general effect of rounding the rib corners was a decrease in both rib heat transfer coefficient and channel pressure drop. (c) For the highest blockage ratio ribs (e/Dh = 0.25), 90 deg ribs performed superior to 45 deg ribs. However, this trend reversed for smaller rib blockage ratios. (d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. (e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. (f) Rib thermal performance decreased with the rib blockage ratio. The smallest rib geometry (e/Dh = 0.133) at a pitch-to-height ratio of 10 and the largest rib geometry (e/Dh = 0.25) at a pitch-to-height ratio of 5, both in midstream position, produced the highest and the lowest thermal performances, respectively.


Author(s):  
M. E. Taslim ◽  
T. Li ◽  
D. M. Kercher

Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with angled ribs is on the average higher than that roughened with 90° ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in heat transfer coefficient on the roughened wall with high levels of heat transfer coefficient at one end of the rib and low levels at the other end. In an effort to basically double the area of high heat transfer coefficients, the angled rib is broken at the center to form a V-shape rib and tests are conducted to investigate the resulting heat transfer coefficients and friction factors. Three different square rib geometries, corresponding to blockage ratios of 0.083, 0.125 and 0.167, with a fixed pitch-to-height ratio of 10, mounted on two opposite walls of a square channel in a staggered configuration are tested in a stationary channel for 5000 < Re < 30000. Heat transfer coefficients, friction factors and thermal performances are compared with those of 90°, 45° and discrete angled ribs. The V-shape ribs are tested for both pointing upstream and downstream of the main flow. Test results show that: a) 90° ribs represent the lowest thermal performance, based on the same pumping power, and is essentially the same for the 2:1 change in blockage ratio, b) low blockage ratio (e/Dh =0.083) V-shape ribs pointing downstream produced the highest heat transfer enhancement and friction factors. Amongst all other geometries with blockage ratios of 0.125 and 0.167, 45° ribs showed the highest heat transfer enhancements with friction factors less than those of V-shape ribs, c) thermal performance of 45° ribs and the lowest blockage discrete ribs are among the highest of the geometries tested in this investigation, and, d) discrete angled ribs, although inferior to 45° and V-shape ribs, produce much higher heat transfer coefficients and lower friction factors compared to 90° ribs.


Author(s):  
M. E. Taslim ◽  
A. Lengkong

For high blockage ribs with large heat transfer areas, commonly used in small gas turbine blades, the rib heat transfer is a significant portion of the overall heat transfer in the cooling passages. Three staggered 45° rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface averaged heat transfer coefficients and friction factors for 45° ribs, and 90° ribs reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. b) Except for two cases corresponding to the highest blockage ribs mounted at pitch-to-height ratios of 8.5 and 10 for which the heat transfer results of 45° ribs were very close to those of 90° ribs, 45° ribs produced higher heat transfer coefficients than 90° ribs. c) At pitch-to-height ratios of 8.5 and 10, all 45° ribs produced lower friction factors than 90° ribs. However, when they were brought closer to each other (S/e=5), they produced higher friction factors than 90° ribs. d) Heat transfer coefficients for the two smaller rib geometries (e/Dh=0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. f) Rib thermal performance decreased with the rib blockage ratio. For both angles of attack, the smallest rib geometry in the midstream position and at a pitch-to-height ratio of 10 had the highest thermal performance, and the highest blockage rib in the furthest upstream position produced the lowest thermal performance.


1996 ◽  
Vol 118 (1) ◽  
pp. 20-28 ◽  
Author(s):  
M. E. Taslim ◽  
T. Li ◽  
D. M. Kercher

Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with angled ribs is on the average higher than that roughened with 90 deg ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in heat transfer coefficient on the roughened wall with high levels of heat transfer coefficient at one end of the rib and low levels at the other end. In an effort basically to double the area of high heat transfer coefficients, the angled rib is broken at the center to form a V-shaped rib, and tests are conducted to investigate the resulting heat transfer coefficients and friction factors. Three different square rib geometries, corresponding to blockage ratios of 0.083, 0.125, and 0.167, with a fixed pitch-to-height ratio of 10, mounted on two opposite walls of a square channel in a staggered configuration, are tested in a stationary channel for 5000 < Re < 30,000. Heat transfer coefficients, friction factors, and thermal performances are compared with those of 90 deg, 45 deg, and discrete angled ribs. The V-shaped ribs are tested for both pointing upstream and downstream of the main flow. Test results show that: (a) 90 deg ribs represent the lowest thermal performance, based on the same pumping power, and is essentially the same for the 2:1 change in blockage ratio, (b) low-blockage-ratio (e/Dh = 0.083) V-shaped ribs pointing downstream produced the highest heat transfer enhancement and friction factors. Among all other geometries with blockage ratios of 0.125 and 0.167, 45 deg ribs showed the highest heat transfer enhancements with friction factors less than those of V-shaped ribs, (c) thermal performance of 45 deg ribs and the lowest blockage discrete ribs are among the highest of the geometries tested in this investigation, and (d) discrete angled ribs, although inferior to 45 deg and V-shaped ribs, produce much higher heat transfer coefficients and lower friction factors compared to 90 deg ribs.


Author(s):  
M. E. Taslim ◽  
A. Lengkong

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of 45°, round-comer ribs. Three staggered rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested in a square channel for pitch-to-haight ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unhealed channel wall. Comparisons were made between the surface averaged heat transfer coefficients and channel friction factors for sharp- and round-comer ribs and 45° versus 90° ribs, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. b) General effect of rounding the rib corners was a decrease in both rib heat transfer coefficient and channel pressure drop. c) For the highest blockage ratio ribs (e/Dh = 0.25), 90° ribs performed superior to 45° ribs. However, this trend reversed for smaller rib blockage ratios. d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. f) Rib thermal performance decreased with the rib blockage ratio. The smallest rib geometry (e/Dh = 0.133) at a pitch-to-height ratio of 10 and the largest rib geometry (e/Dh = 0.25) at a pitch-to-height ratio of 5, both in midstream position, produced the highest and the lowest thermal performances, respectively.


Sign in / Sign up

Export Citation Format

Share Document