Low-voltage power supplies, d.c. output

2015 ◽  
Keyword(s):  

This study investigated current harmonic distortions emanating from domestic non-linear loads which have adverse deleterious effects on installed low voltage switchgears such as transformers and conductors. The study examined harmonic distortions emanating from dominant domestic nonlinear loads such as microwave, TV set, radio, fridge, video player and compacted fluorescence bulbs (CFLs) using a power quality equipment. From the results obtained, it was noted that there is need to mitigate harmonic distortions generated by domestic loads at point of common coupling (PCC). It is pertinent to mention that the recent study on supplied loads carried out in Kenya power grid shows that above 67% of power end users are domestic consumers. Under current last mile initiative and Global Partnership on Output Based Aid (GPOBA), unprecedented increase of domestic loads connected to the power grid is predicted. It is worth pointing out that most of these domestic loads have switch mode power supplies (SMPS) which have inherent characteristics of distorting current waveform which causes voltage distortions, over-heating of neutral conductors and premature failure of distribution transformers. Further, most of these loads have two modes; standby/sleep mode and operating mode. Results shows that the two modes generate current harmonic distortions which stream back to power utility network through the service cable. Recently, engineers have designed electronic devices that consume less power. These devices draw current in pulses rather than sinusoidal waveform. As a result, the quality of power supplies continues to deteriorate hence adversely affecting the installed low voltage switchgears such as distribution transformers. Although various mitigation measures exist to reduce the effects of harmonic distortions, this paper proposes a single phase active filter as an optimal solution for attenuating the harmonics emanating from domestic non-linear loads.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 576
Author(s):  
Hsin-Chuan Chen ◽  
Ping-Huan Kuo ◽  
Chiou-Jye Huang

In many industries and medical power system applications, dual power source design is often used to ensure that the equipment runs continuously, even when the main power supply is shut down. However, the voltage feedback between two independent power supplies and low loss output are critical issues for the system energy dissipation. Without using a dedicated chip, a new mutual blocking control technology is proposed in this paper to effectively solve the problem of voltage feedback existing in the conventional dual power system. In addition, without adding much hardware cost, the proposed dual power switch design can completely avoid voltage feedback and achieve a low voltage loss of about 30 mV when the load current is less than 0.5 A.


Sign in / Sign up

Export Citation Format

Share Document