Anodizing of aluminium and its alloys � Method to test the surface abrasion resistance using glass-coated abrasive paper

2019 ◽  
1961 ◽  
Vol 34 (2) ◽  
pp. 482-492 ◽  
Author(s):  
K. Wellinger ◽  
H. Uetz

Abstract The abrasion resistance of five different types of rubber were compared with steel (St 37) by various testing methods, such as the abrasive paper method, the abrasion cup method and the sand blasting method. The order of resistance of the various types of rubber against sand blasting is different from the order which is obtained with the sandpaper and abrasion cup methods. However, variations of the testing conditions within one method generally does not change the order. It has been shown, that rubber is more resistant against sand blasting than other materials investigated (basalb, malleable steel, non-alloyed hard castings) if the sand blast is directed essentially perpendicularly against the tested surface.


Author(s):  
W. R. Duff ◽  
L. E. Thomas ◽  
R. M. Fisher ◽  
S. V. Radcliffe

Successful retrieval of the television camera and other components from the Surveyor III spacecraft by the Apollo 12 astronauts has provided a unique opportunity to study the effects of a known and relatively extensive exposure to the lunar environment. Microstructural effects including those produced by micro-meteorite impact, radiation damage (by both the solar wind and cosmic rays) and solar heating might be expected in the materials used to fabricate the spacecraft. Samples received were in the form of 1 cm2 of painted unpainted aluminum alloy sheet from the top of the camera visor (JPL Code 933) and the sides (935,936) and bottom (934) of the lower camera shroud. They were prepared for transmission electron microscopy by first hand-grinding with abrasive paper to a thickness of 0.006". The edges were lacquered and the sample electropolished in 10% perchloric methanol using the “window” method, to a thickness of ~0.001". Final thinning was accomplished by polishing 3 mm punched disks in an acetic-phosphoric-nitric acid solution.


1987 ◽  
Vol 29 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Hideyuki Negishi ◽  
Tsutomu Fujihara ◽  
Noboru Yamazaki ◽  
Atsushi Miyagi ◽  
Morio Higaki ◽  
...  
Keyword(s):  

Alloy Digest ◽  
1956 ◽  
Vol 5 (9) ◽  

Abstract AUR-O-MET 57 is a high nickel-aluminum bronze that was developed primarily for its abrasion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: Cu-42. Producer or source: Aurora Metal Company.


Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract Colmonoy 805 is a nickel-chromium-boron alloy with coarse particles of chromium boride added to give it excellent sliding-type abrasion resistance. The alloy contains chromium boride in the matrix as large added particles. It is supplied only as a crushed powder for application with Colmonoy’s Fuseweld process. This datasheet provides information on composition, physical properties, microstructure, and elasticity. It also includes information on corrosion resistance as well as joining and powder metal forms.Filing Code: Ni-233. Producer or source: Wall Colmonoy Corporation. Originally published September 1976, revised December 1998.


Sign in / Sign up

Export Citation Format

Share Document