Metallic and other inorganic coatings. Measurement of the linear thermal expansion coefficient of thermal barrier coatings

2020 ◽  
2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


2008 ◽  
Vol 368-372 ◽  
pp. 1328-1330
Author(s):  
Qiang Xu ◽  
Wei Pan ◽  
Chun Lei Wan ◽  
Long Hao Qi ◽  
He Zhuo Miao ◽  
...  

Based on La2Zr2O7 ceramic for thermal barrier coatings, LaSmZr2O7 ceramic doped with samarium ion was successfully prepared using solid state reaction method. The pellets were sintered at 1600°C for 10 hours in air. The phase structure, thermal conductivity and thermal expansion coefficient of LaSmZr2O7 ceramic and La2Zr2O7 ceramic were measured by XRD, laser-flash device, high-temperature dilatometry, respectively. The results show that the crystal structure of LaSmZr2O7 ceramic is not affected by the doped samarium ion in the zirconium lattice. The thermophysical results show that the thermal conductivity of the LaSmZr2O7 ceramic is lower than that of La2Zr2O7 ceramic, while the thermal expansion coefficient is higher than that of La2Zr2O7 ceramic. These results indicate that LaSmZr2O7 ceramic or Ln2Zr2O7 ceramics doped with other rare earth ions could be candidate materials for future thermal barrier coatings.


1985 ◽  
Vol 38 (4) ◽  
pp. 617 ◽  
Author(s):  
JG Collins ◽  
SJ Collocott ◽  
GK White

The linear thermal expansion coefficient a from 2 to 100 K and heat capacity per gram cp from 0�3 to 30 K are reported for fully-stabilized zirconia containing a nominal 16 wt.% (9 mol.%) of yttria. The heat capacity below 7 K has been analysed into a linear (tunnelling?) term, a Schottky term centred at 1�2 K, a Debye term (e~ = 540 K), and a small T5 contribution. The expansion coefficient is roughly proportional to T from 5 to 20 K and gives a limiting lattice Griineisen parameter 'Yo ::::: 5, which agrees with that calculated from elastic data.


2021 ◽  
Vol 57 (11) ◽  
pp. 1135-1139
Author(s):  
Yu. S. Belozerov ◽  
A. V. Knyazev ◽  
B. N. Kodess ◽  
A. S. Shipilova ◽  
M. O. Steshin ◽  
...  

2015 ◽  
Vol 756 ◽  
pp. 313-318 ◽  
Author(s):  
Valeriy M. Pogrebenkov ◽  
Kirill S. Kostikov ◽  
E.A. Sudarev ◽  
A.V. Elistratova ◽  
Ksenia S. Kamyshnaya ◽  
...  

Glass-ceramic composite materials based on lead-borate glass and eucryptite – a compound with a negative coefficient of linear thermal expansion (CTE), along with the conditions for their production are studied in this paper. Effects of the amount and granulometric composition of the eucryptite as well as time/temperature processing conditions on the change of the linear thermal expansion coefficient of the sintered samples are also examined.


Sign in / Sign up

Export Citation Format

Share Document