Design, Preparation and Thermal Properties of (La0.4Sm0.5Yb0.1)2Zr2O7 Ceramic for Thermal Barrier Coatings

2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.

2008 ◽  
Vol 368-372 ◽  
pp. 1328-1330
Author(s):  
Qiang Xu ◽  
Wei Pan ◽  
Chun Lei Wan ◽  
Long Hao Qi ◽  
He Zhuo Miao ◽  
...  

Based on La2Zr2O7 ceramic for thermal barrier coatings, LaSmZr2O7 ceramic doped with samarium ion was successfully prepared using solid state reaction method. The pellets were sintered at 1600°C for 10 hours in air. The phase structure, thermal conductivity and thermal expansion coefficient of LaSmZr2O7 ceramic and La2Zr2O7 ceramic were measured by XRD, laser-flash device, high-temperature dilatometry, respectively. The results show that the crystal structure of LaSmZr2O7 ceramic is not affected by the doped samarium ion in the zirconium lattice. The thermophysical results show that the thermal conductivity of the LaSmZr2O7 ceramic is lower than that of La2Zr2O7 ceramic, while the thermal expansion coefficient is higher than that of La2Zr2O7 ceramic. These results indicate that LaSmZr2O7 ceramic or Ln2Zr2O7 ceramics doped with other rare earth ions could be candidate materials for future thermal barrier coatings.


2012 ◽  
Vol 512-515 ◽  
pp. 459-462 ◽  
Author(s):  
Tao Li ◽  
L. Liu ◽  
Q. Xu ◽  
S.Z. Zhu

Sm2Zr2O7 is one of the promising candidate materials for the next generation thermal barrier coatings because of its excellent thermal properties. But at high temperature the thermal conductivity of rare-earth zirconate increases because of radiation conduction. NiCr2O4, which can absorb the infrared photons intensely, was introduced to reduce the radiation conduction of rare-earth zirconate. NiCr2O4 powder was prepared by coprecipitation. The bulks of Sm2Zr2O7— NiCr2O4 with different content of NiCr2O4 were prepared by using non-pressure sintering. The phase and microstructure of the samples were characterized by XRD and SEM. The optical absorption was also investigated. The absorptivity of the composite, which was generally higher than that of pure Sm2Zr2O7 prepared by coprecipitation and non-pressure sintering, was enhanced with the content of NiCr2O4 increasing. The enhancement of absorptivity will reduce the radiation conduction of rare-earth zirconate potentially.


2008 ◽  
Vol 368-372 ◽  
pp. 1334-1336
Author(s):  
Ling Liu ◽  
Qiang Xu ◽  
Fu Chi Wang ◽  
Hong Song Zhang

A complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2(Zr0.7Ce0.3)2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation method. The phase composition, microstructure and the thermophysical properties were investigated. XRD results revealed that single phase (La0.4Sm0.5Yb0.1)2(Zr0.7Ce0.3)2O7 with pyrochlore structure was prepared and the SEM result showed that the microstructure of the product was dense and no other phases existed among the particles. With the temperature increasing, the thermal expansion coefficient (CTE) of the ceramic increased, while the thermal conductivity decreased. The results indicated that CTE of the ceramic was slightly higher than that of La2Zr2O7 and the thermal conductivity of the ceramic was lower than that of La2Zr2O7. These results imply that (La0.4Sm0.5Yb0.1)2(Zr0.7Ce0.3)2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


Author(s):  
P.J. Huang ◽  
J.J. Swab ◽  
P.J. Patel ◽  
W.S. Chu

Abstract The development of thermal barrier coatings (TBCs) for diesel engines has been driven by the potential improvements in engine power and fuel efficiency that TBCs represent. TBCs have been employed for many years to reduce corrosion of valves and pistons because of their high temperature durability and thermal insulative properties. There are research programs to improve TBCs wear resistance to allow for its use in tribologically intensive areas of the engine. This paper will present results from tribological tests of ceria stabilized zirconia (CeSZ). The CeSZ was applied by atmospheric plasma spray process. Various mechanical and thermal properties were measured including wear, coefficient of thermal expansion, thermal conductivity, and microhardness. The results show the potential use of CeSZ in wear sensitive applications in diesel applications. Keywords: Thermal Barrier Coating, Diesel Engine, Wear, Thermal Conductivity, and Thermal Expansion


Author(s):  
Jianhua Yu ◽  
Huayu Zhao ◽  
Shunyan Tao ◽  
Xiaming Zhou ◽  
Chuanxian Ding

Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 °C. Sm2Zr2O7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm2Zr2O7, SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200–1500 °C for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well.


Sign in / Sign up

Export Citation Format

Share Document