Glued-in rods in glued structural timber products. Testing, requirements and bond shear strength classification

2021 ◽  
2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000347-000354 ◽  
Author(s):  
HongWen Zhang ◽  
RunSheng Mao ◽  
Ning-Cheng Lee ◽  
Satoshi Tanimoto

The BiAgX™ paste, designed for die attach application, composed of the majority of BiAg powders (melting point >260°C) and the minority of additive powders. The additive powders are dominating the interfacial reaction to improve the wetting of the paste on various commonly-used surface finish materials. After reflow, the joint shows the above 260°C remelting temperature. The average bond shear strength of BiAgX joint between SiC die and AMBC-SiN substrate (Package A) decreases from 54MPa to 16MPa with increasing temperature from RT to 250°C. Upon thermal storage at 200°C or 230°C for 3000hrs, the bond shear strength decreases from 54MPa to 38MPa and 21MPa, respectively. Upon thermal cycling from −55°C to 125°C for 2000cycles and thermal shock from −55°C to 150°C for 2000cycles, BiAgX outperforms Pb5Sn2.5Sn (Package B). BiAgX also show the better corrosion resistance than SAC305 and Pb5Sn2.5Ag under 96hrs salt water spray (SWS) tests.


2015 ◽  
Vol 830-831 ◽  
pp. 215-218 ◽  
Author(s):  
Sanjay Tikale ◽  
Mrunali Sona ◽  
K.N. Prabhu

Lead-free solders are environment friendly and are in great demand for microelectronic applications. In the present study, Sn-9Zn lead free solder alloy was solidified on Cu substrate for different reflow times from 10 to 1000s. The influence of reflow time on wetting, formation of intermetallic compounds (IMCs) and bond shear strength was studied using dynamic contact angle analyzer, bond tester and scanning electron microscopy. The results indicate that, the wettability of the solder alloy increased with increase in reflow time. Microstructure study revealed the presence of Cu5Zn8 and CuZn5 IMCs at the interface. The thickness of an IMC increased with increase in the reflow time. The mean thickness of about 11μm for Cu5Zn8 IMC layer was observed for the reflow time of 1000s. The thickness of CuZn5 layer increased up to a reflow time of 100s and decreases thereafter. The bond shear strength increased up to 100s and decreased with increase in reflow time. The decrement in shear strength at higher reflow time is mainly due to excessive thickness of Cu5Zn8 IMC layer and diffusion of Sn from bulk solder towards the substrate. The excessive thick IMC layer exhibited pre micro-cracks led to the brittle failure of bond under the influence of shear stress.


2018 ◽  
Vol 27 (4) ◽  
pp. 477-480
Author(s):  
Włodzimierz Więckiewicz ◽  
Marcin Kasiak ◽  
Natalia Grychowska ◽  
Joanna Smardz ◽  
Mariusz Pryliński

Sign in / Sign up

Export Citation Format

Share Document