Meat and meat products. Determination of total phosphorous content

2021 ◽  
Author(s):  
M. Haider ◽  
B. Bohrmann

The technique of Z-contrast in STEM offers the possibility to determine the local concentration of macromolecules like lipids, proteins or DNA. Contrast formation depends on the atomic composition of the particular structure. In the case of DNA, its phosphorous content discriminates it from other biological macromolecules. In our studies, sections of E. coli, the dinoflagellate Amphidinium carterae and Euglena spec. cells were used which were obtained by cryofixation followed by freeze-substitution into acetone with 3% glutaraldehyde. The samples were then embedded either in Lowicryl HM20 at low temperature or in Epon at high temperature. Sections were coated on both sides with 30Å carbon.The DF- and the inelastic image have been recorded simultaneously with a Cryo-STEM. This Cryo-STEM is equipped with a highly dispersive Electron Energy Loss Spectrometer. With this instrument pure Z-contrast can be achieved either with a Filtered DF-image divided by the inelastic image or, as is used in this paper, by dividing the conventional DF-image by an inelastic image which has been recorded with an inelastic detector whose response is dependent on the total energy loss of the inelastically scattered electrons.


1990 ◽  
Vol 73 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Kurt Kolar

Abstract A colorimetric method for the determination of hydroxyproline as a measure of collagen in meat and meat products has been collaboratively studied in 18 laboratories. The method includes hydrolysis with sulfuric acid, oxidation with chloramine- T, and formation of a reddish purple complex with 4- dimethylaminobenzaldehyde. Five frozen and 3 freeze-dried samples were tested, ranging in content from 0.11 to 0.88% and from 0.39 to 4.0% hydroxyproline, respectively. The mean values of 2 identical samples were 0.245 and 0.251 %. The average recovery from a spiked sample was 96.1 %. The hydroxyproline content of a known sample (a mixture of 2 samples in the ratio 5:2) was calculated to 1.42%, which agrees well with the analytical result, 1.40%. In comparison with other collaborative studies, based on the ISO analytical method, the repeatability and reproducibility of this method agree well with the other results. This method was accepted as an official NMKL method by all national Committees, and has been adopted official first action by AOAC as an NMKLAOAC method.


1948 ◽  
Vol 31 (3) ◽  
pp. 646-652
Author(s):  
Charles F Poe ◽  
Frank A Lane
Keyword(s):  

1945 ◽  
Vol 10 (1) ◽  
pp. 60-65 ◽  
Author(s):  
COLONEL MAURICE W. HALE
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Babiker Yagoub Abdulkair ◽  
Amin O. Elzupir ◽  
Abdulaziz S. Alamer

An accurate IPC-UV method was developed and validated for the determination of nitrite (NI) and nitrate (NA) in meat products. The best separation was achieved on a phenyl-hexyl column (150 mm × 4.6 mm, 3 µm) with a mobile phase composed of 25% acetonitrile and 75% buffer (2 mM disodium hydrogen phosphate and 3 mM tetrabutylammonium bromide, pH = 4). Eluents were monitored at 205 nm. Linearity ranges were 1.86 × 10−6–7.5 µg·ml−1 and 0.09–5.0 µg·ml−1 for NI and NA, respectively. The correlation coefficients were greater than 0.999 for NI and NA. This method was applied to a number of processed meat products in Riyadh (n = 155). NI ranged from 1.78 to 129.69 mg·kg−1, and NA ranged from 0.76 to 96.64 mg·kg−1. Results showed extensive use of NI and NA; however, concentrations were within the legal limit of Saudi Arabia except for one sample. Further, the risk assessment and dietary exposure have been estimated for both NI and NA.


Sign in / Sign up

Export Citation Format

Share Document