Anatolia from the Last Glacial Maximum to the Holocene Climatic Optimum : cultural formations and the impact of the environmental setting.

Paléorient ◽  
1997 ◽  
Vol 23 (2) ◽  
pp. 25-38 ◽  
Author(s):  
Mehmet Özdogan
2020 ◽  
Author(s):  
Sophie-Berenice Wilmes ◽  
Mattias Green ◽  
Andreas Schmittner

<p>The global mean sea-level decrease of 120 – 130 m during the Last Glacial Maximum (LGM; 26 – 19 kyr BP) is thought to have substantially altered semidiurnal tidal dynamics in the glacial North Atlantic. This more than doubled global open ocean tidal dissipation in comparison to present day and increased the amount of energy available for diapycnal mixing which is important for driving the global meridional overturning circulation. Reconstructions of the glacial ocean have generally suggested a more sluggish Atlantic meridional overturning circulation (AMOC) during the LGM together with weaker mixing. Here, we investigate the impact of tidal dissipation changes on the LGM AMOC and the carbon cycle using the intermediate complexity ocean model UVic coupled to the biogeochemistry model MOBI forced with three different LGM dissipation estimates. The simulations are constrained with LGM δ<sup>13</sup>C and radiocarbon data from sediments. Our results suggest that our simulations, as previously inferred, most closely agree with a weakened LGM AMOC (8 – 9 Sv), and importantly, that the agreement is consistent with increased LGM tidal mixing. These results firstly imply that a weakened AMOC state can occur with stronger tidal mixing without hampering the agreement with the sediment isotope data. Secondly, this work highlights the importance of considering tidal dissipation changes when modelling the paleo-ocean.</p>


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


2019 ◽  
Vol 15 (3) ◽  
pp. 1039-1062
Author(s):  
Krista M. S. Kemppinen ◽  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Andy Ridgwell ◽  
Andrew D. Friend

Abstract. During the Last Glacial Maximum (LGM), atmospheric CO2 was around 90 ppmv lower than during the pre-industrial period. The reasons for this decrease are most often elucidated through factorial experiments testing the impact of individual mechanisms. Due to uncertainty in our understanding of the real system, however, the different models used to conduct the experiments inevitably take on different parameter values and different structures. In this paper, the objective is therefore to take an uncertainty-based approach to investigating the LGM CO2 drop by simulating it with a large ensemble of parameter sets, designed to allow for a wide range of large-scale feedback response strengths. Our aim is not to definitely explain the causes of the CO2 drop but rather explore the range of possible responses. We find that the LGM CO2 decrease tends to predominantly be associated with decreasing sea surface temperatures (SSTs), increasing sea ice area, a weakening of the Atlantic Meridional Overturning Circulation (AMOC), a strengthening of the Antarctic Bottom Water (AABW) cell in the Atlantic Ocean, a decreasing ocean biological productivity, an increasing CaCO3 weathering flux and an increasing deep-sea CaCO3 burial flux. The majority of our simulations also predict an increase in terrestrial carbon, coupled with a decrease in ocean and increase in lithospheric carbon. We attribute the increase in terrestrial carbon to a slower soil respiration rate, as well as the preservation rather than destruction of carbon by the LGM ice sheets. An initial comparison of these dominant changes with observations and paleoproxies other than carbon isotope and oxygen data (not evaluated directly in this study) suggests broad agreement. However, we advise more detailed comparisons in the future, and also note that, conceptually at least, our results can only be reconciled with carbon isotope and oxygen data if additional processes not included in our model are brought into play.


2021 ◽  
Author(s):  
Karen Søby Özdemir ◽  
Henrieka Detlef ◽  
Linda Lambertucci ◽  
Christof Pearce

<p>Little is known about climate and ocean conditions during the Last Glacial Maximum in Baffin Bay, Greenland. This is partly due to the dissolution of biogenic carbonates in the central Baffin Bay, preventing reliable <sup>14</sup>C-chronologies. We present the results from a transect of gravity cores retrieved during the 2019 BIOS cruise on the HDMS Lauge Koch in the northern Baffin Bay. Core LK19-ST8-14G has been analyzed for grain size variations, sea-ice biomarkers, XRF, and color spectrophotometry. A preliminary chronology based on radiocarbon dates from foraminifera show that the bottom of the core is approximately 35.000 cal. years BP while the top sediments are of Late Holocene age. The sediment archive thus covers the full extent of the LGM and the last deglaciation. High-resolution photography and CT scans allowed the identification of distinctly different lithofacies in the sediment archive. The lower sections of the core are characterized by laminated mud with no IRD and absence of microfossils indicating a sub ice-shelf environment during the glacial period. The laminated sequence is interrupted by several coarser, detrital-carbonate (DC) rich layers which are interpreted as episodes of glacial retreat or ice-shelf collapse. The youngest of these DC layers immediately precedes the Holocene, which is represented by approximately 40 cm of bioturbated sediments with some IRD. This interpretation is supported by the concentrations of HBIs and sterols throughout the core, which indicate near perennial ice cover in the glacial northern Baffin Bay and more open water conditions during the Holocene.</p>


Sign in / Sign up

Export Citation Format

Share Document