Analyse pollinique d'une tourbière holocène dans les Montes do Buio : Cuadramón (Galice, nord-ouest de l'Espagne) [Pollen analyse of holocene peat-bog in the Montes do Buio : Cuadramón (Galice, N. W. of Spain)]

Quaternaire ◽  
2000 ◽  
Vol 11 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Amélia Virginia Gonzalez ◽  
Maria Pilar Saa
Keyword(s):  
2021 ◽  
Vol 13 (5) ◽  
pp. 907
Author(s):  
Theodora Lendzioch ◽  
Jakub Langhammer ◽  
Lukáš Vlček ◽  
Robert Minařík

One of the best preconditions for the sufficient monitoring of peat bog ecosystems is the collection, processing, and analysis of unique spatial data to understand peat bog dynamics. Over two seasons, we sampled groundwater level (GWL) and soil moisture (SM) ground truth data at two diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served as reference data and were modeled with a suite of potential variables derived from digital surface models (DSMs) and RGB, multispectral, and thermal orthoimages reflecting topomorphometry, vegetation, and surface temperature information generated from drone mapping. We used 34 predictors to feed the random forest (RF) algorithm. The predictor selection, hyperparameter tuning, and performance assessment were performed with the target-oriented leave-location-out (LLO) spatial cross-validation (CV) strategy combined with forward feature selection (FFS) to avoid overfitting and to predict on unknown locations. The spatial CV performance statistics showed low (R2 = 0.12) to high (R2 = 0.78) model predictions. The predictor importance was used for model interpretation, where temperature had strong impact on GWL and SM, and we found significant contributions of other predictors, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated the area of applicability (AOA) by presenting maps where the prediction model yielded high-quality results and where predictions were highly uncertain because machine learning (ML) models make predictions far beyond sampling locations without sampling data with no knowledge about these environments. The AOA method is well suited and unique for planning and decision-making about the best sampling strategy, most notably with limited data.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1517-1529
Author(s):  
C Matthias Hüls ◽  
John Meadows ◽  
Andreas Rau

ABSTRACTRadiocarbon (14C) ages were determined for 10 iron samples from the war booty offering site in the Nydam peat bog (SE Denmark), and compared to archaeologically inferred periods of deposition. Additional 14C measurements were carried out for modern iron standards made with charcoal of known isotopic composition to evaluate possible effects of handling. Modern iron standards give depleted 14C concentrations, compared to the initial charcoal 14C composition, and may indicate carbon fractionation effects during carbon dissolution in the iron lattice. Further studies are needed to verify if this is a common effect during iron production. 14C dating of two swords and one ax head are in comparatively good agreement with expected deposition times and indicate only small old-wood effects. In contrast, 14C dating of iron rivets from the Nydam (B) oak boat proved difficult due to corrosion with siderite (FeCO3) and conservation with wax. A step-combustion procedure was applied, using a low (∼570–600°C) temperature prior to the high (∼970–1000°C) combustion temperature for carbon extraction, aiming to remove siderite and wax before collecting the original carbon dissolved in the iron lattice. Nevertheless, measured 14C ages of the iron rivets differ by about 200–300 years from the dendro-date of the Nydam (B) oak boat they belong to, indicating persisting aging effects (e.g. old-wood, contamination with fossil carbon added during iron making and/or handling prior 14C dating). Also, a possible recycling of older iron cannot be excluded.


2022 ◽  
Vol 804 ◽  
pp. 150045
Author(s):  
Roya AminiTabrizi ◽  
Katerina Dontsova ◽  
Nathalia Graf Grachet ◽  
Malak M. Tfaily

Chemosphere ◽  
2021 ◽  
Vol 279 ◽  
pp. 130531
Author(s):  
Xue Zhao ◽  
Xiaolin Hou ◽  
Dongliang Zhang ◽  
Yunpeng Yang ◽  
Zhao Huang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document