Faculty Opinions recommendation of Allele-specific receptor-ligand interactions in Brassica self-incompatibility.

Author(s):  
Laurie Smith
2020 ◽  
Vol 31 (5) ◽  
pp. 1362-1369 ◽  
Author(s):  
Shaun M. Christie ◽  
Trevor R. Ham ◽  
Grant T. Gilmore ◽  
Paul D. Toth ◽  
Nic D. Leipzig ◽  
...  

2008 ◽  
Vol 294 (3) ◽  
pp. C743-C753 ◽  
Author(s):  
Shile Liang ◽  
Changliang Fu ◽  
Desiree Wagner ◽  
Huiguang Guo ◽  
Dongying Zhan ◽  
...  

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between β2-integrin (lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of β2-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of β2-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.


1981 ◽  
Vol 45 (03) ◽  
pp. 263-266 ◽  
Author(s):  
B A Fiedel ◽  
M E Frenzke

SummaryNative DNA (dsDNA) induces the aggregation of isolated human platelets. Using isotopically labeled dsDNA (125I-dsDNA) and Scatchard analysis, a single class of platelet receptor was detected with a KD = 190 pM and numbering ~275/platelet. This receptor was discriminatory in that heat denatured dsDNA, poly A, poly C, poly C · I and poly C · poly I failed to substantially inhibit either the platelet binding of, or platelet aggregation induced by, dsDNA; by themselves, these polynucleotides were ineffective as platelet agonists. However, poly G, poly I and poly G · I effectively and competitively inhibited platelet binding of the radioligand, independently activated the platelet and when used at a sub-activating concentration decreased the extent of dsDNA stimulated platelet aggregation. These data depict a receptor on human platelets for dsDNA and perhaps certain additional polynucleotides and relate receptor-ligand interactions to a physiologic platelet function.


Sign in / Sign up

Export Citation Format

Share Document