Faculty Opinions recommendation of Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse.

Author(s):  
Bruce Morgan
2001 ◽  
Vol 1 (3) ◽  
pp. 423-434 ◽  
Author(s):  
Mahua Mukhopadhyay ◽  
Svetlana Shtrom ◽  
Concepcion Rodriguez-Esteban ◽  
Lan Chen ◽  
Tohru Tsukui ◽  
...  

1993 ◽  
Vol 188 (3) ◽  
Author(s):  
J�rg M�nner ◽  
Wolfgang Seidl ◽  
Gerd Steding

Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 89-108
Author(s):  
Carla Falugi ◽  
Margherita Raineri

The distribution of acetylcholinesterase (AChE) and pseudocholinesterase (BuChE) activities was studied by histochemical, quantitative and electrophoretical methods during the early development of chick limbs, from stage 16 to stage 32 H.H. (Hamburger & Hamilton, 1951). By quantitative methods, true AChE activity was found, and increased about threefold during the developmental period, together with a smaller amount of BuChE which increased more rapidly in comparison with the AChE activity from stage 25 to 32 H.H. Cholinesterase activity was histochemically localized mainly in interacting tissues, such as the ectoderm (including the apical ectodermal ridge) and the underlying mesenchyme. True AChE was histochemically localized around the nuclei and on the plasma membrane of ectodermal (including AER) and mesenchymal cells, and at the plasma membrane of mesenchymal cell processes reaching the basal lamina between the ectoderm and the mesenchyme. AChE together with BuChE activity was found in the basal lamina between the ectoderm and the mesenchyme, in underlying mesenchymal cells and in deeper mesenchymal cells, especially during their transformation into unexpressed chondrocytes. During limb morphogenesis, the cellular and regional localization of the enzyme activities showed variations depending on the stage of development and on the occurrence of interactions. The possibility of morphogenetic functions of the enzyme is discussed.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 223-232
Author(s):  
John F. Fallon ◽  
Robert O. Kelley

The fine structure of the apical ectodermal ridge of five phylogenetically divergent orders of mammals and two orders of birds was examined using transmission and freeze fracture electron microscopy. Numerous large gap junctions were found in all apical ectodermal ridges studied. This was in contrast to the dorsal and ventral limb ectoderms where gap junctions were always very small and sparsely distributed. Thus, gap junctions distinguish the inductively active apical epithelium from the adjacent dorsal and ventral ectoderms. The distribution of gap junctions in the ridge was different between birds and mammals but characteristic within the two classes. Birds, with a pseudostratified columnar apical ridge, had the heaviest concentration of gap junctions at the base of each ridge cell close to the point where contact was made with the basal lamina. Whereas mammals, with a stratified cuboidal to squamous apical ridge, had a more uniform distribution of gap junctions throughout the apical epithelium. The difference in distribution for each class may reflect structural requirements for coupling of cells in the entire ridge. We propose that all cells of the apical ridges of birds and mammals are electrotonically and/or metabolically coupled and that this may be a requirement for the integrated function of the ridge during limb morphogenesis.


2006 ◽  
Vol 84 (2) ◽  
pp. 257-262 ◽  
Author(s):  
W Y Chang ◽  
F KhosrowShahian ◽  
M Wolanski ◽  
R Marshall ◽  
W McCormick ◽  
...  

In contrast to the pattern of limb emergence in mammals, chicks, and the newt N. viridescens, embryos such as Xenopus laevis and Eleutherodactylus coqui initiate pelvic limb buds before they develop pectoral ones. We studied the expression of Pitx1 in X. laevis and E. coqui to determine if this paired-like homeodomain transcription factor directs differentiation specifically of the hindlimb, or if it directs the second pair of limbs to form, namely the forelimbs. We also undertook to determine if embryonic expression patterns were recapitulated during the regeneration of an amputated limb bud. Pitx1 is expressed in hindlimbs in both X. laevis and E. coqui, and expression is similar in both developing and regenerating limb buds. Expression in hindlimbs is restricted to regions of proliferating mesenchyme.Key words: regeneration, Xenopus laevis, limb bud, Pitx1 protein, specification.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1385-1394 ◽  
Author(s):  
J.A. Helms ◽  
C.H. Kim ◽  
G. Eichele ◽  
C. Thaller

In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic doses of retinoic acid had weak polarizing activity but inclusion of a retinoic acid-exposed apical ectodermal ridge or of prospective wing bud ectoderm evoked strong polarizing activity. Likewise, polarizing activity of prospective wing mesenchyme was markedly enhanced by co-grafting either a retinoic acid-exposed apical ectodermal ridge or ectoderm from the wing region. This equivalence of ectoderm-mesenchyme interactions required for the establishment of polarizing activity in retinoic acid-treated wing buds and in prospective wing tissue, suggests a role of retinoic acid in the establishment of the zone of polarizing activity. We found that prospective wing bud tissue is a high-point of retinoic acid synthesis. Furthermore, retinoid receptor-specific antagonists blocked limb morphogenesis and down-regulated a polarizing signal, sonic hedgehog. Limb agenesis was reversed when antagonist-exposed wing buds were treated with retinoic acid. Our results demonstrate a role of retinoic acid in the establishment of the endogenous zone of polarizing activity.


Sign in / Sign up

Export Citation Format

Share Document