Faculty Opinions recommendation of Comparison of a hair bundle's spontaneous oscillations with its response to mechanical stimulation reveals the underlying active process.

Author(s):  
Peter Gillespie
2001 ◽  
Vol 120 (5) ◽  
pp. A83-A83
Author(s):  
M KIM ◽  
N JAVED ◽  
F CHRISTOFI ◽  
H COOKE

2018 ◽  
Author(s):  
Paolo Madeddu

The year 2018 marked the 110th anniversary of Goldmann’s discovery that vascularization is an active process in tissues1 and the 50th anniversary of the concomitant reports from Greenblatt and Shubik2 and Ehrmann and Knoth3 that soluble morphogenic factors are required for cancer angiogenesis. Many other radically transformative paradigms have been introduced in the last decades. To name a few, the molecular search for the identity of master regulators of vascular tone led to the discovery of the Endothelium-Derived Relaxing Factor (EDRF; i.e., NO4), while clinically inspired investigations led to the recognition of the pathophysiological relevance of neoangiogenesis in cancer and tissue healing. This brought about the proposal of blocking angiogenesis to halt tumor growth and stimulating angiogenesis to treat myocardial ischemia and heart failure5-7.


2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


Sign in / Sign up

Export Citation Format

Share Document