Faculty Opinions recommendation of Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes.

Author(s):  
Takashi Kadowaki
2002 ◽  
Vol 2 (4) ◽  
pp. 477-488 ◽  
Author(s):  
Andreas Stahl ◽  
James G. Evans ◽  
Shraddha Pattel ◽  
David Hirsch ◽  
Harvey F. Lodish

Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5374-5383 ◽  
Author(s):  
Andrew W. Norris ◽  
Michael F. Hirshman ◽  
Jianrong Yao ◽  
Niels Jessen ◽  
Nicolas Musi ◽  
...  

In the setting of insulin resistance, agonists of peroxisome proliferator-activated receptor (PPAR)-γ restore insulin action in muscle and promote lipid redistribution. Mice with muscle-specific knockout of PPARγ (MuPPARγKO) develop excess adiposity, despite reduced food intake and normal glucose disposal in muscle. To understand the relation between muscle PPARγ and lipid accumulation, we studied the fuel energetics of MuPPARγKO mice. Compared with controls, MuPPARγKO mice exhibited significantly increased ambulatory activity, muscle mitochondrial uncoupling, and respiratory quotient. Fitting with this latter finding, MuPPARγKO animals compared with control siblings exhibited a 25% reduction in the uptake of the fatty acid tracer 2-bromo-palmitate (P < 0.05) and a 13% increase in serum nonesterified fatty acids (P = 0.05). These abnormalities were associated with no change in AMP kinase (AMPK) phosphorylation, AMPK activity, or phosphorylation of acetyl-CoA carboxylase in muscle and occurred despite increased expression of fatty acid transport protein 1. Palmitate oxidation was not significantly altered in MuPPARγKO mice despite the increased expression of several genes promoting lipid oxidation. These data demonstrate that PPARγ, even in the absence of exogenous activators, is required for normal rates of fatty acid uptake in oxidative skeletal muscle via mechanisms independent of AMPK and fatty acid transport protein 1. Thus, when PPARγ activity in muscle is absent or reduced, there will be decreased fatty acid disposal leading to diminished energy utilization and ultimately adiposity.


2020 ◽  
Author(s):  
W Chamulitrat ◽  
J Seeßle ◽  
B Javaheri-Haghighi ◽  
S Döring ◽  
X Zhu ◽  
...  

2014 ◽  
Vol 3 (5) ◽  
pp. 554-564 ◽  
Author(s):  
Carlos A. Penno ◽  
Stuart A. Morgan ◽  
Adam J. Rose ◽  
Stephan Herzig ◽  
Gareth G. Lavery ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. G1067-G1073
Author(s):  
C. Elsing ◽  
A. Kassner ◽  
W. Stremmel

Fatty acids enter hepatocytes, at least in part, by a carrier-mediated uptake mechanism. The importance of driving forces for fatty acid uptake is still controversial. To evaluate possible driving mechanisms for fatty acid transport across plasma membranes, we examined the role of transmembrane proton gradients on fatty acid influx in primary cultured rat hepatocytes. After hepatocytes were loaded with SNARF-1 acetoxymethyl ester, changes in intracellular pH (pHi) under different experimental conditions were measured and recorded by confocal laser scanning microscopy. Fatty acid transport was increased by 45% during cellular alkalosis, achieved by adding 20 mM NH4Cl to the medium, and a concomitant paracellular acidification was observed. Fatty acid uptake was decreased by 30% during cellular acidosis after withdrawal of NH4Cl from the medium. Cellular acidosis activates the Na+/H+ antiporter to export excessive protons to the outer cell surface. Inhibition of Na+/H+ antiporter activity by amiloride diminishes pHi recovery and thereby accumulation of protons at the outer surface of the plasma membrane. Under these conditions, fatty acid uptake was further inhibited by 57% of control conditions. This suggests stimulation of fatty acid influx by an inwardly directed proton gradient. The accelerating effect of protons at the outer surface of the plasma membrane was confirmed by studies in which pH of the medium was varied at constant pHi. Significantly higher fatty acid influx rates were observed at low buffer pH. Recorded differences in fatty acid uptake appeared to be independent of changes in membrane potential, because BaCl2 did not influence initial uptake velocity during cellular alkalosis and paracellular acidosis. Moreover, addition of oleate-albumin mixtures to the NH4Cl incubation buffer did not change the observed intracellular alkalinization. In contrast, after cells were acid loaded, addition of oleate-albumin solutions to the recovery buffer increased pHi recovery rates from 0.21 +/- 0.02 to 0.36 +/- 0.05 pH units/min (P < 0.05), indicating that fatty acids further stimulate Na+/H+ antiporter activity during pHi recovery from an acid load. It is concluded that carrier-mediated uptake of fatty acids in hepatocytes follows an inwardly directed transmembrane proton gradient and is stimulated by the presence of H+ at the outer surface of the plasma membrane.


2016 ◽  
Vol 88 (5) ◽  
pp. 731-738
Author(s):  
Xiaoling Chen ◽  
Yanliu Luo ◽  
Ruisheng Wang ◽  
Bo Zhou ◽  
Zhiqing Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document