Faculty Opinions recommendation of Using orthologous and paralogous proteins to identify specificity-determining residues in bacterial transcription factors.

Author(s):  
Rob Russell
1999 ◽  
Vol 33 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Miguel Vicente ◽  
Keith F. Chater ◽  
Victor de Lorenzo

2021 ◽  
Author(s):  
Lummy Maria Oliveira Monteiro ◽  
Joao Saraiva ◽  
Rodolfo Brizola Toscan ◽  
Peter F Stadler ◽  
Rafael Silva-Rocha ◽  
...  

AbstractTranscription Factors (TFs) are proteins that control the flow of genetic information by regulating cellular gene expression. Here we describe PredicTF, a first platform supporting the prediction and classification of novel bacterial TF in complex microbial communities. We evaluated PredicTF using a two-step approach. First, we tested PredictTF’s ability to predict TFs for the genome of an environmental isolate. In the second evaluation step, PredicTF was used to predict TFs in a metagenome and 11 metatranscriptomes recovered from a community performing anaerobic ammonium oxidation (anammox) in a bioreactor. PredicTF is open source pipeline available at https://github.com/mdsufz/PredicTF.


2019 ◽  
Author(s):  
Andreas U. Müller ◽  
Marc Leibundgut ◽  
Nenad Ban ◽  
Eilika Weber-Ban

AbstractIn mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determined the crystal structure ofArthrobacter aurescensPafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA molecules. Using anin vivomutational screen inMycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.


2016 ◽  
Vol 33 ◽  
pp. 105-112 ◽  
Author(s):  
Vincent Libis ◽  
Baudoin Delépine ◽  
Jean-Loup Faulon

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Andreas U. Müller ◽  
Marc Leibundgut ◽  
Nenad Ban ◽  
Eilika Weber-Ban

Abstract In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.


Sign in / Sign up

Export Citation Format

Share Document