Faculty Opinions recommendation of A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding.

Author(s):  
Marie Filbin
Keyword(s):  
2005 ◽  
Vol 25 (12) ◽  
pp. 5158-5170 ◽  
Author(s):  
Yieyie Yang ◽  
Erik A. Lundquist

ABSTRACT The roles of actin-binding proteins in development and morphogenesis are not well understood. The actin-binding protein UNC-115 has been implicated in cytoskeletal signaling downstream of Rac in Caenorhabditis elegans axon pathfinding, but the cellular role of UNC-115 in this process remains undefined. Here we report that UNC-115 overactivity in C. elegans neurons promotes the formation of neurites and lamellipodial and filopodial extensions similar to those induced by activated Rac and normally found in C. elegans growth cones. We show that UNC-115 activity in neuronal morphogenesis is enhanced by two molecular mechanisms: when ectopically driven to the plasma membrane by the myristoylation sequence of c-Src, and by mutation of a putative serine phosphorylation site in the actin-binding domain of UNC-115. In support of the hypothesis that UNC-115 modulates actin cytoskeletal organization, we show that UNC-115 activity in serum-starved NIH 3T3 fibroblasts results in the formation of lamellipodia and filopodia. We conclude that UNC-115 is a novel regulator of the formation of lamellipodia and filopodia in neurons, possibly in the growth cone during axon pathfinding.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43968 ◽  
Author(s):  
Lingyan Xing ◽  
Kazuyuki Hoshijima ◽  
David J. Grunwald ◽  
Esther Fujimoto ◽  
Tyler S. Quist ◽  
...  

2006 ◽  
Vol 289 (1) ◽  
pp. 229-242 ◽  
Author(s):  
Anna Y. Zinovyeva ◽  
Serena M. Graham ◽  
Veronica J. Cloud ◽  
Wayne C. Forrester

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 415-425 ◽  
Author(s):  
H. Baier ◽  
S. Klostermann ◽  
T. Trowe ◽  
R.O. Karlstrom ◽  
C. Nusslein-Volhard ◽  
...  

A systematic search for mutations affecting the retinotectal projection in zebrafish larvae was performed, as part of the large-scale Tubingen screen for homozygous diploid mutants in embryonic development. 2,746 inbred lines (F2 families) from males mutagenized with ethylnitroso urea were screened. In wild-type larvae, developing retinal axons travel along a stereotyped route to the contralateral optic tectum. Here, their terminals form a highly ordered retinotopic map. To detect deviations from this pattern, an axon tracing assay was developed that permits screening of large numbers of mutagenized fish. Two fluorescent tracer dyes (DiI and DiO) were injected at opposite poles of the eyes of day-5 aldehyde-fixed larvae. 12 hours later, retinal axons were labelled over their entire length, and could be observed through the intact skin. The assay procedure (aldehyde fixation, mounting, injection of dyes, microscopic analysis) took about 1 minute per fish. In total, 125,000 individual fish larvae were processed. During the screen, 114 mutations in approx. 35 genes were discovered. For the mutants subjected to complementation testing, the number of alleles per locus ranges from 1 to 15. The mutations affect distinct steps in the retinotectal pathway, from pathfinding between eye and tectum to map formation along the dorsal-ventral and the anterior-posterior axis of the tectum. Mutations that disturb axon pathfinding to the tectum for the most part do not disrupt retinotopic mapping, and vice versa. The majority of the mutants display associated defects in other tissues and die before day 10. These mutants provide new tools for studying the formation of neuronal maps. The results of this screen show that a large-scale genetic approach can be applied to relatively late and circumscribed developmental processes in the vertebrate brain.


Sign in / Sign up

Export Citation Format

Share Document