Faculty Opinions recommendation of Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor.

Author(s):  
Drusilla L Burns
2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Damir Nizamutdinov ◽  
Honey B Golden ◽  
Hao Feng ◽  
Fnu Gerilechaogetu ◽  
Donald M Foster ◽  
...  

Recent molecular and pharmacological studies performed on non-cardiac tissues suggest that tumor endothelial marker-8 (TEM-8), also known as anthrax toxin receptor 1 (ANTXR1) and capillary morphogenesis gene-2 (CMG-2), known as anthrax toxin receptor 2 (ANTXR2) regulate survival, proliferation, cell shape, as well as polarity, adhesion, migration and differentiation. However, downstream signaling mechanisms and function of these molecules have not been studied. Recent studies indicate that activation of protein kinase B (Akt) and c-Jun N-terminal kinases (JNK) have been associated with hypertrophic growth, as well as regulation of contractility in cardiac myocytes (CM). In this study we’ve investigated the role of ANTXR1 and ANTXR2 receptors in intracellular pathways of contractility regulation in neonatal rat ventricular myocytes (NRVM). Primary culture of NRVM was used to determine the effects of ANTXR1/ANTXR2 activation on Akt and JNK phosphorylation by Western blot analysis. Flow cytometry and immunostaining of alive CM were used to determine expression levels and distribution of anthrax receptors throughout the cells. Furin-activated form of anthrax protective antigen (PA 63 ) was used in order to selectively stimulate ANTXR1/ANTXR2 receptors and get understanding of downstream signaling mechanisms coupled to them. The treatments with angiotensin II, type1 receptor (AT 1 ) inhibitors were used in order to separate responses of distinct regulatory pathways of contractility. All treatments were done at variable time courses started in seconds and finished in half of hour to determine a sequence of phosphorylation reactions going from cellular membrane to deep inside of cell. As a result, abundant expression of both receptors was observed in cardiac myocytes. Activation of one phospho-site of focal adhesion kinase (FAK 861 ) was started in 15 sec with subsequent phosphorylation of JNK and Akt 473 in 5 and 10 minutes. Involvement of new molecules was observed in cascade chain reaction of contractility regulation. In conclusion, ANTXR1/ANTXR2 were demonstrated to couple to mechano-sensor molecules: FAK, Akt and JNK, as well as interact with the AT 1 receptors to mediate downstream signaling events responsible for regulation of contractility.


2003 ◽  
Vol 100 (9) ◽  
pp. 5170-5174 ◽  
Author(s):  
H. M. Scobie ◽  
G. J. A. Rainey ◽  
K. A. Bradley ◽  
J. A. T. Young

2019 ◽  
Author(s):  
Jordan G. Finnell ◽  
Tsz-Ming Tsang ◽  
Lorna Cryan ◽  
Samuel Garrard ◽  
Sai-Lun Lee ◽  
...  

AbstractCapillary Morphogenesis Gene 2 protein (CMG2) is a transmembrane, integrin-like receptor and the primary receptor for the anthrax toxin. In addition to its role as an anthrax toxin receptor, CMG2 has been repeatedly shown to play a role in angiogenic processes. However, the molecular mechanism mediating observed CMG2-related angiogenic effects has not been fully elucidated. Previous studies have found that CMG2 binds type IV collagen (Col-IV), a key component of the vascular basement membrane, as well as other ECM proteins. Currently, no link has been made between these CMG2-ECM interactions and angiogenesis; however, ECM fragments are known to play a role in regulating angiogenesis. Here, we further characterize the CMG2-Col-IV interaction and explore the effect of this interaction on angiogenesis. Using a peptide array, we observed that CMG2 preferentially binds peptide fragments of the NC1 (non-collagenous domain 1) domains of Col-IV. These domains are also known as the fragments arresten (from the α1 chain) and canstatin (from the α2 chain) and have documented antiangiogenic properties. A second peptide array was probed to map a putative binding epitope. A top hit from the initial array, a canstatin-derived peptide, binds to the CMG2 ligand-binding von Willebrand factor A (vWA) domain with sub-micromolar affinity (peptide S16, Kd = 400 ± 200 nM). This peptide competes with anthrax protective antigen (PA) for CMG2 binding, and does not bind CMG2 in the presence of EDTA. Together these data suggest that, like PA, S16 interacts with CMG2 at the metal-ion dependent adhesion site (MIDAS) of its vWA domain. We demonstrate that CMG2 specifically mediates endocytic uptake of S16, since CMG2-/- endothelial cells show markedly reduced S16 uptake, without reducing total endocytosis. Furthermore, we show that S16 reduces endothelial migration but not cell proliferation. Taken together, our data demonstrate that a Col IV-derived anti-angiogenic peptide acts via CMG2, suggesting a possible link between CMG2-Col IV interactions and angiogenesis.


2018 ◽  
Vol 115 (51) ◽  
pp. 13087-13092 ◽  
Author(s):  
Lin Cao ◽  
Ran Zhang ◽  
Tingting Liu ◽  
Zixian Sun ◽  
Mingxu Hu ◽  
...  

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty “spent” particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV–ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Fabiana Freire Mendes de Oliveira ◽  
Sireesha Mamillapalli ◽  
Srinivas Gonti ◽  
Robert N. Brey ◽  
Han Li ◽  
...  

ABSTRACT Protective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses. We investigated the immunogenicity of anthrax PA, in the presence and absence of the soluble von Willebrand factor A domain of the human form of receptor capillary morphogenesis protein 2 (sCMG2), to elicit antibodies to PA in BALB/c mice. Prior studies showed that sCMG2 stabilizes the 83-kDa PA structure to pH, chemical denaturants, temperature, and proteolysis and slows the hydrogen-deuterium exchange rate of histidine residues far from the binding interface. In contrast to a vaccine containing PA without adjuvant, we found that mice immunized with PA in stable complex with sCMG2 showed markedly reduced antibody responses to PA, including toxin-neutralizing antibodies and antibodies to domain 4, which correlated with fewer toxin-neutralizing antibodies. In contrast, mice immunized with PA in concert with a nonbinding mutant of sCMG2 (D50A) showed anti-PA antibody responses similar to those observed with PA alone. Our results suggest that addition of sCMG2 to a PA vaccine formulation is likely to result in a significantly diminished immune response, but we discuss the multitude of factors that could contribute to reduced immunogenicity. IMPORTANCE The anthrax toxin PA is the major immunogen in the current anthrax vaccine (anthrax vaccine adsorbed). Improving the anthrax vaccine for avoidance of a cold chain necessitates improvements in the thermodynamic stability of PA. We address how stabilizing PA using sCMG2 affects PA immunogenicity in BALB/c mice. Although the stability of PA is increased by binding to sCMG2, PA immunogenicity is decreased. This study emphasizes that, while binding of a ligand retains or improves conformational stability without affecting the native sequence, epitope recognition or processing may be affected, abrogating an effective immune response.


2014 ◽  
Vol 210 (2) ◽  
pp. 154.e1-154.e8 ◽  
Author(s):  
Joy Yumiko Vink ◽  
Pelisa Cheryll Charles-Horvath ◽  
Jan Krzysztof Kitajewski ◽  
Claire Vech Reeves

Sign in / Sign up

Export Citation Format

Share Document