Faculty Opinions recommendation of The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast.

Author(s):  
Gregory Copenhaver
Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Teresa de los Santos ◽  
Neil Hunter ◽  
Cindy Lee ◽  
Brittany Larkin ◽  
Josef Loidl ◽  
...  

Abstract Current models for meiotic recombination require that crossovers derive from the resolution of a double-Holliday junction (dHJ) intermediate. In prokaryotes, enzymes responsible for HJ resolution are well characterized but the identification of a eukaryotic nuclear HJ resolvase has been elusive. Indirect evidence suggests that MUS81 from humans and fission yeast encodes a HJ resolvase. We provide three lines of evidence that Mus81/Mms4 is not the major meiotic HJ resolvase in S. cerevisiae: (1) MUS81/MMS4 is required to form only a distinct subset of crossovers; (2) rather than accumulating, dHJ intermediates are reduced in an mms4 mutant; and (3) expression of a bacterial HJ resolvase has no suppressive effect on mus81 meiotic phenotypes. Our analysis also reveals the existence of two distinct classes of crossovers in budding yeast. Class I is dependent upon MSH4/MSH5 and exhibits crossover interference, while class II is dependent upon MUS81/MMS4 and exhibits no interference. mms4 specifically reduces crossing over on small chromosomes, which are known to undergo less interference. The correlation between recombination rate and degree of interference to chromosome size may therefore be achieved by modulating the balance between class I/class II crossovers.


2020 ◽  
Author(s):  
F. Javier Aguado ◽  
Raquel Carreira ◽  
Vanesa Hurtado-Nieves ◽  
Miguel G. Blanco

ABSTRACTYen1 and GEN1 are members of the Rad2/XPG family of nucleases that were identified as the first canonical nuclear Holliday junction (HJ) resolvases in budding yeast and humans due to their ability to introduce two symmetric, coordinated incisions on opposite strands of the HJ, yielding nicked DNA products that could be readily ligated. While GEN1 has been extensively characterized in vitro, much less is known about the biochemistry of Yen1. Here, we have performed the first in-depth characterization of purified Yen1. We confirmed that Yen1 resembles GEN1 in many aspects, including range of substrates targeted, position of most incisions they produce or monomeric state in solution. However, we have also observed unexpected alternative processing of substrates, such as nicked HJs and a different conformational preference on intact HJs. Moreover, we demonstrate that Yen1 is endowed with additional nuclease activities, like a nick-specific 5’-3’ exonuclease or HJ arm-chopping that could apparently blur its classification as a canonical HJ resolvase. Despite this, we show that Yen1 fulfills the requirements of a canonical HJ resolvase and hypothesize that its wider array of nuclease activities might contribute to its function in the removal of persistent recombination or replication intermediates.


2012 ◽  
Vol 287 (23) ◽  
pp. 19346-19353 ◽  
Author(s):  
Stefanie Hartman Chen ◽  
Chung-Hsuan Wu ◽  
Jody L. Plank ◽  
Tao-shih Hsieh

Genetics ◽  
2021 ◽  
Author(s):  
Krishnaprasad G Nandanan ◽  
Sagar Salim ◽  
Ajith V Pankajam ◽  
Miki Shinohara ◽  
Gen Lin ◽  
...  

Abstract In the baker’s yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e83582 ◽  
Author(s):  
Stefanie Hartman Chen ◽  
Jody L. Plank ◽  
Smaranda Willcox ◽  
Jack D. Griffith ◽  
Tao-shih Hsieh

Sign in / Sign up

Export Citation Format

Share Document