Faculty Opinions recommendation of Distinct activities of Msx1 and Msx3 in dorsal neural tube development.

Author(s):  
Chaya Kalcheim
Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3675-3686 ◽  
Author(s):  
H.M. Stern ◽  
A.M. Brown ◽  
S.D. Hauschka

Previous studies have demonstrated that the neural tube/notochord complex is required for skeletal muscle development within somites. In order to explore the localization of myogenic inducing signals within the neural tube, dorsal or ventral neural tube halves were cultured in contact with single somites or pieces of segmental plate mesoderm. Somites and segmental plates cultured with the dorsal half of the neural tube exhibited 70% and 85% myogenic response rates, as determined by immunostaining for myosin heavy chain. This response was slightly lower than the 100% response to whole neural tube/notochord, but was much greater than the 30% and 10% myogenic response to ventral neural tube with and without notochord. These results demonstrate that the dorsal neural tube emits a potent myogenic inducing signal which accounts for most of the inductive activity of whole neural tube/notochord. However, a role for ventral neural tube/notochord in somite myogenic induction was clearly evident from the larger number of myogenic cells induced when both dorsal neural tube and ventral neural tube/notochord were present. To address the role of a specific dorsal neural tube factor in somite myogenic induction, we tested the ability of Wnt-1-expressing fibroblasts to promote paraxial mesoderm myogenesis in vitro. We found that cells expressing Wnt-1 induced a small number of somite and segmental plate cells to undergo myogenesis. This finding is consistent with the localized dorsal neural tube inductive activity described above, but since the ventral neural tube/notochord also possesses myogenic inductive capacity yet does not express Wnt-1, additional inductive factors are likely involved.


Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 457-464 ◽  
Author(s):  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Yan Li ◽  
Manli Chuai ◽  
Kenneth Ka Ho Lee ◽  
...  

SummaryFibroblast growth factor (FGF) signalling acts as one of modulators that control neural crest cell (NCC) migration, but how this is achieved is still unclear. In this study, we investigated the effects of FGF signalling on NCC migration by blocking this process. Constructs that were capable of inducing Sprouty2 (Spry2) or dominant-negative FGFR1 (Dn-FGFR1) expression were transfected into the cells making up the neural tubes. Our results revealed that blocking FGF signalling at stage HH10 (neurulation stage) could enhance NCC migration at both the cranial and trunk levels in the developing embryos. It was established that FGF-mediated NCC migration was not due to altering the expression of N-cadherin in the neural tube. Instead, we determined that cyclin D1 was overexpressed in the cranial and trunk levels when Sprouty2 was upregulated in the dorsal neural tube. These results imply that the cell cycle was a target of FGF signalling through which it regulates NCC migration at the neurulation stage.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


2021 ◽  
Author(s):  
Ting Li ◽  
Quan Huo ◽  
Zhi Guo Lu ◽  
Xin Ran Xing ◽  
Lu Ding ◽  
...  

Abstract Background The occurrence of neural tube defects is a complex process in which genes, internal and external environment and other factors jointly influence and occur interactively. In this experiment, animal models of different energy balance states are constructed. To explore the mechanism of fos and leptin-leptin receptor during neural tube development of offspring under different energy states and its effect on neural tube development of offspringMethods Using gene identification technology to obtain Mex3c+/- negative energy balance mice and high-fat diet to obtain positive energy balance mice, and obtain E10.5d, E12.5d, E14.5d embryos. We will verify the expression of fos, leptin, LEPR, nestin, PAX3, and H3K27me3 proteins in the neural tube of the offspring through relevant experimental methods.Results We have successfully constructed animal models, Control group (18.82g±1.54g), Mex3c group (18.84g±1.08g), HFD group (22.61g±1.10g). Neural tube HE staining showen that compared with the Control group, the neuronal maturity of the Mex3c group and the HFD group was reduced. Immunohistochemical staining showed that both fos and leptin were expressed on the nucleus, and LEPR was expressed on the cell membrane. Western blot experiments showed that compared with the Control group, the Mex3c group and the HFD group had low expression of fos protein (P<0.01), the Mex3c group had high expression of LEPR protein (P<0.01) and the HFD group had high expression of LEPR protein (P<0.01). Immunostaining experiments showed that nestin was expressed in nerve fibers, and PAX3 and H3K27me3 were both expressed in the nucleus. Western blooting experiment showed that compared with the Control group, the Mex3c group had high expression of nestin protein (P<0.01), PAX3 protein (P<0.01), H3K27me3 (P<0.01), and the HFD group had high expression of nestin protein (P<0.01). ) And PAX3 protein (P<0.01), H3K27me3 (P<0.01).ConclusionsMex3c regulates leptin and LEPR by enhancing the expression of fos mRNA to participate in the neural tube development process of offspring. The neural tube nestin, PAX3, and H3K27me3 of the offspring of Mex3c+/- mice and high-fat diet mice continue to be highly expressed. Mex3c+/- mice express low leptin, and high-fat diet mice highly express leptin; preliminary reveals the regulation of different energy states Leptin-LEPR is involved in the process of neurodevelopment. Mex3c mutant mice and mice on a high-fat diet lead to decreased neurodevelopmental maturity.


1995 ◽  
Vol 41 (4) ◽  
pp. 552-560 ◽  
Author(s):  
F. Trousse ◽  
M. C. Giess ◽  
C. Soula ◽  
S. Ghandour ◽  
A.-M. Duprat ◽  
...  

2018 ◽  
Vol 444 ◽  
pp. S193-S201 ◽  
Author(s):  
Nagif Alata Jimenez ◽  
Sergio A. Torres Pérez ◽  
Estefanía Sánchez-Vásquez ◽  
Juan I. Fernandino ◽  
Pablo H. Strobl-Mazzulla

Sign in / Sign up

Export Citation Format

Share Document