endocytic recycling
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 35)

H-INDEX

54
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Hanchong Zhang ◽  
Zihang Cheng ◽  
Wenbo Li ◽  
Jie Hu ◽  
Linyue Zhao ◽  
...  

The disruption of endosomal actin architecture negatively affects endocytic recycling. However, the underlying homeostatic mechanisms that regulate actin organization during recycling remain unclear. In this study, we identified a synergistic endosomal actin assembly restricting mechanism in C. elegans involving WTS-1/LATS kinase, which is a core component of the Hippo pathway. WTS-1 resides on the sorting endosomes and colocalizes with the actin polymerization regulator PTRN-1/CAMSAPs. We observed an increase in PTRN-1-labeled structures in WTS-1-deficient cells, indicating that WTS-1 can limit the endosomal localization of PTRN-1. Accordingly, the actin overaccumulation phenotype in WTS-1-depleted cells was mitigated by the associated PTRN-1 loss. We further demonstrated that recycling defects and actin overaccumulation in WTS-1-deficient cells were reduced by the overexpression of constitutively active UNC-60A/cofilin(S3A), which aligns with the role of LATS as a positive regulator of cofilin activity. Altogether, our data confirmed previous findings, and we proposed an additional model: WTS-1 acts alongside the UNC-60A/cofilin-mediated actin disassembly to restrict the assembly of endosomal F-actin by curbing PTRN-1 dwelling on endosomes, preserving recycling transport.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Priyam Banerjee ◽  
Guan-Yu Xiao ◽  
Xiaochao Tan ◽  
Veronica J. Zheng ◽  
Lei Shi ◽  
...  

AbstractEpithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change.


2021 ◽  
Author(s):  
Cyrine Bentaleb ◽  
Kévin Hervouet ◽  
Claire Montpellier ◽  
Charline Camuzet ◽  
Julien Burlaud-Gaillard ◽  
...  

Background & Aims: Although Hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet and it is currently unknown whether HEV infection leads to cellular membrane modelling as many positive-strand RNA viruses. HEV genome encodes three proteins, the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we aimed to probe infectious particles and viral factories in HEV-producing cells, using antibodies directed against the different ORF2 isoforms. Methods: We generated monoclonal antibodies that specifically recognize the particle-associated ORF2i form, and antibodies that recognize the different ORF2 isoforms. We used them in confocal and electron microscopy approaches to probe viral factories in HEV-producing cells. We performed an extensive colocalization study of viral proteins with subcellular markers. We analyzed the impact of silencing Rab11, a central player of the endocytic recycling compartment (ERC). Results: One of the antibodies, named P1H1 and targeting the N-terminus of ORF2i, recognized delipidated HEV particles. Confocal and ultrastructural microscopy analyses of HEV-producing cells revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. These subcellular structures were enriched in ORF2 and ORF3 proteins, and were dependent on the ORF3 expression and ORF2i capsid protein assembly. Colocalization and silencing analyses revealed that these structures are derived from the ERC. Conclusions: Our study reveals that HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.


MedComm ◽  
2021 ◽  
Author(s):  
Lin Zhao ◽  
Kunhong Zhong ◽  
Jia Zhao ◽  
Xin Yong ◽  
Aiping Tong ◽  
...  

2021 ◽  
Vol 118 (36) ◽  
pp. e2105510118
Author(s):  
Xin Yong ◽  
Lin Zhao ◽  
Wenfeng Hu ◽  
Qingxiang Sun ◽  
Hyoungjun Ham ◽  
...  

The molecular events that determine the recycling versus degradation fates of internalized membrane proteins remain poorly understood. Two of the three members of the SNX-FERM family, SNX17 and SNX31, utilize their FERM domain to mediate endocytic trafficking of cargo proteins harboring the NPxY/NxxY motif. In contrast, SNX27 does not recycle NPxY/NxxY-containing cargo but instead recycles cargo containing PDZ-binding motifs via its PDZ domain. The underlying mechanism governing this divergence in FERM domain binding is poorly understood. Here, we report that the FERM domain of SNX27 is functionally distinct from SNX17 and interacts with a novel DLF motif localized within the N terminus of SNX1/2 instead of the NPxY/NxxY motif in cargo proteins. The SNX27-FERM-SNX1 complex structure reveals that the DLF motif of SNX1 binds to a hydrophobic cave surrounded by positively charged residues on the surface of SNX27. The interaction between SNX27 and SNX1/2 is critical for efficient SNX27 recruitment to endosomes and endocytic recycling of multiple cargoes. Finally, we show that the interaction between SNX27 and SNX1/2 is critical for brain development in zebrafish. Altogether, our study solves a long-standing puzzle in the field and suggests that SNX27 and SNX17 mediate endocytic recycling through fundamentally distinct mechanisms.


2021 ◽  
Author(s):  
Catarina Perdigão ◽  
Mariana A Barata ◽  
Tatiana Burrinha ◽  
Claudia Guimas Almeida

Genetics identified BIN1 as the second most important risk locus associated with late-onset Alzheimer's disease after APOE4. Here we show the consequences of two coding variants in BIN1 (rs754834233 and rs138047593), both in terms of intracellular beta-amyloid accumulation (iAbeta) and early endosome enlargement, two interrelated early cytopathological Alzheimer's disease phenotypes, supporting their association with LOAD risk. We previously found that Bin1 deficiency potentiates beta-amyloid production by decreasing BACE1 recycling and enlarging early endosomes. Here, we demonstrate that the expression of the two LOAD mutant forms of Bin1 did not rescue the iAbeta accumulation and early endosome enlargement induced by Bin1 knockdown and recovered by wild-type Bin1. The LOAD coding variants reduced Bin1 interaction with BACE1 likely causing a dominant-negative effect since Bin1 mutants, but not wild-type Bin1, overexpression increased iAbeta42 due to defective BACE1 recycling and accumulation in early endosomes. Endocytic recycling of transferrin was similarly affected by Bin1 wild-type and mutants, indicating that Bin1 is a general regulator of endocytic recycling. These data show that the LOAD mutations in Bin1 lead to a loss of function, suggesting that endocytic recycling defects are an early causal mechanism of Alzheimer's disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Del Balzo ◽  
Anahí Capmany ◽  
Ignacio Cebrian ◽  
María Teresa Damiani

During cross-presentation, exogenous antigens (i.e. intracellular pathogens or tumor cells) are internalized and processed within the endocytic system and also by the proteasome in the cytosol. Then, antigenic peptides are associated with Major Histocompatibility Complex (MHC) class I molecules and these complexes transit to the plasma membrane in order to trigger cytotoxic immune responses through the activation of CD8+ T lymphocytes. Dendritic cells (DCs) are particularly adapted to achieve efficient antigen cross-presentation and their endocytic network displays important roles during this process, including a sophisticated MHC-I transport dependent on recycling compartments. In this study, we show that C. trachomatis, an obligate intracellular pathogen that exhibits multiple strategies to evade the immune system, is able to induce productive infections in the murine DC line JAWS-II. Our results show that when C. trachomatis infects these cells, the bacteria-containing vacuole strongly recruits host cell recycling vesicles, but no other endosomal compartments. Furthermore, we found that chlamydial infection causes significant alterations of MHC-I trafficking in JAWS-II DCs: reduced levels of MHC-I expression at the cell surface, disruption of the perinuclear MHC-I intracellular pool, and impairment of MHC-I endocytic recycling to the plasma membrane. We observed that all these modifications lead to a hampered cross-presentation ability of soluble and particulate antigens by JAWS-II DCs and primary bone marrow-derived DCs. In summary, our findings provide substantial evidence that C. trachomatis hijacks the DC endocytic recycling system, causing detrimental changes on MHC-I intracellular transport, which are relevant for competent antigen cross-presentation.


2021 ◽  
Vol 220 (5) ◽  
Author(s):  
Yanling Yan ◽  
Shuai Liu ◽  
Can Hu ◽  
Chaoyi Xie ◽  
Linyue Zhao ◽  
...  

Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1–deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Lejiao Mao ◽  
Chenyi Liao ◽  
Jiao Qin ◽  
Yanqiu Gong ◽  
Yifei Zhou ◽  
...  

Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress–signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.


Sign in / Sign up

Export Citation Format

Share Document