Faculty Opinions recommendation of Glycine 176 affects catalytic properties and stability of the Synechococcus sp. strain PCC6301 ribulose-1,5-bisphosphate carboxylase/oxygenase.

Author(s):  
Jessup Shively
1998 ◽  
Vol 76 (6) ◽  
pp. 906-916 ◽  
Author(s):  
J M Shively ◽  
C E Bradburne ◽  
H C Aldrich ◽  
T A Bobik ◽  
J L Mehlman ◽  
...  

Carboxysomes containing the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been demonstrated in a variety of chemoautotrophic prokaryotes and cyanobacteria. The genes in the ccm and cso operon in Synechococcus sp. PCC7942 and Thiobacillus neapolitanus, respectively, code for several carboxysome polypeptides. The polypeptides CcmK and CsoS1 exhibit a high degree of conservation, and in turn show significant homology to the CchA and PduA polypeptides of the ethanolamine and propanediol operons of enteric bacteria. Probing Southern blots of Escherichia coli genomic DNA with csoS1A showed positive hybridization indicating the presence of a csoS1-like gene. Growing Salmonella enterica and Klebsiella oxytoca with propanediol, and E.coli with ethanolamine as the energy source under anaerobic conditions resulted in the formation of polyhedral bodies in these bacteria. The DNA - deduced amino acid sequence of three additional csoS1 genes in both Thiobacillus intermedius and Thiobacillus denitrificans was determined. The nine CsoS1 polypeptides, which includes the three previously determined for T.neapolitanus, exhibited greater than 67% sequence identity. Identity and similarity comparisons and phylogenetic analysis of known polyhedral body CsoS1-like polypeptides indicate a close structural relationship between polyhedral bodies of potentially very different function.Key words: polyhedral bodies, carboxysomes, ribulose-1,5-bisphosphate carboxylase-oxygenase, cyanobacteria, thiobacilli, enteric bacteria.


2004 ◽  
Vol 45 (10) ◽  
pp. 1390-1395 ◽  
Author(s):  
Takuo Onizuka ◽  
Sumiyo Endo ◽  
Hideo Akiyama ◽  
Shozo Kanai ◽  
Masahiko Hirano ◽  
...  

2011 ◽  
Vol 439 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Andrea W.U. Busch ◽  
Edward J. Reijerse ◽  
Wolfgang Lubitz ◽  
Nicole Frankenberg-Dinkel ◽  
Eckhard Hofmann

PEB (phycoerythrobilin) is one of the major open-chain tetrapyrrole molecules found in cyanobacterial light-harvesting phycobiliproteins. In these organisms, two enzymes of the ferredoxin-dependent bilin reductase family work in tandem to reduce BV (biliverdin IXα) to PEB. In contrast, a single cyanophage-encoded enzyme of the same family has been identified to catalyse the identical reaction. Using UV–visible and EPR spectroscopy we investigated the two individual cyanobacterial enzymes PebA [15,16-DHBV (dihydrobiliverdin):ferredoxin oxidoreductase] and PebB (PEB:ferredoxin oxidoreductase) showing that the two subsequent reactions catalysed by the phage enzyme PebS (PEB synthase) are clearly dissected in the cyanobacterial versions. Although a highly conserved aspartate residue is critical for both reductions, a second conserved aspartate residue is only involved in the A-ring reduction of the tetrapyrrole in PebB and PebS. The crystal structure of PebA from Synechococcus sp. WH8020 in complex with its substrate BV at a 1.55 Å (1 Å=0.1 nm) resolution revealed further insight into the understanding of enzyme evolution and function. Based on the structure it becomes obvious that in addition to the importance of certain catalytic residues, the shape of the active site and consequently the binding of the substrate highly determines the catalytic properties.


Sign in / Sign up

Export Citation Format

Share Document