calvin cycle
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 84)

H-INDEX

50
(FIVE YEARS 5)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0255896
Author(s):  
Chongyang Li ◽  
Mingyang Ma ◽  
Tianpeng Zhang ◽  
Pengwen Feng ◽  
Xiao Chen ◽  
...  

Wheat (Triticum aestivum L.) is one of the most important crops in the world, but the yield and quality of wheat are highly susceptible to heat stress, especially during the grain-filling stage. Therefore, it is crucial to select high-yield and high-temperature-resistant varieties for food cultivation. There is a positive correlation between the yield and photosynthetic rate of wheat during the entire grain-filling stage, but few studies have shown that lines with high photosynthetic rates can maintain higher thermotolerance at the same time. In this study, two pairs of wheat near isogenic lines (NILs) with different photosynthetic rates were used for all experiments. Our results indicated that under heat stress, lines with a high photosynthetic rate could maintain the activities of photosystem II (PSII) and key Calvin cycle enzymes in addition to their higher photosynthetic rates. The protein levels of D1 and HSP70 were significantly increased in the highly photosynthetic lines, which contributed to maintaining high photosynthetic rates and ensuring the stability of the Calvin cycle under heat stress. Furthermore, we found that lines with a high photosynthetic rate could maintain high antioxidant enzyme activity to scavenge reactive oxygen species (ROS) and reduce ROS accumulation better than lines with a low photosynthetic rate under high-temperature stress. These findings suggest that lines with high photosynthetic rates can maintain a higher photosynthetic rate despite heat stress and are more thermotolerant than lines with low photosynthetic rates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nikolai V. Ravin ◽  
Tatyana S. Rudenko ◽  
Dmitry D. Smolyakov ◽  
Alexey V. Beletsky ◽  
Andrey L. Rakitin ◽  
...  

Two strains of filamentous, colorless sulfur bacteria were isolated from bacterial fouling in the outflow of hydrogen sulfide-containing waters from a coal mine (Thiothrix sp. Ku-5) and on the seashore of the White Sea (Thiothrix sp. AS). Metagenome-assembled genome (MAG) A52 was obtained from a sulfidic spring in the Volgograd region, Russia. Phylogenetic analysis based on the 16S rRNA gene sequences showed that all genomes represented the genus Thiothrix. Based on their average nucleotide identity and digital DNA-DNA hybridization data these new isolates and the MAG represent three species within the genus Thiothrix with the proposed names Thiothrix subterranea sp. nov. Ku-5T, Thiothrix litoralis sp. nov. AST, and “Candidatus Thiothrix anitrata” sp. nov. A52. The complete genome sequences of Thiothrix fructosivorans QT and Thiothrix unzii A1T were determined. Complete genomes of seven Thiothrix isolates, as well as two MAGs, were used for pangenome analysis. The Thiothrix core genome consisted of 1,355 genes, including ones for the glycolysis, the tricarboxylic acid cycle, the aerobic respiratory chain, and the Calvin cycle of carbon fixation. Genes for dissimilatory oxidation of reduced sulfur compounds, namely the branched SOX system (SoxAXBYZ), direct (soeABC) and indirect (aprAB, sat) pathways of sulfite oxidation, sulfur oxidation complex Dsr (dsrABEFHCEMKLJONR), sulfide oxidation systems SQR (sqrA, sqrF), and FCSD (fccAB) were found in the core genome. Genomes differ in the set of genes for dissimilatory reduction of nitrogen compounds, nitrogen fixation, and the presence of various types of RuBisCO.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 391
Author(s):  
Kaixing Lu ◽  
Jiutong Sun ◽  
Qiuping Li ◽  
Xueqin Li ◽  
Songheng Jin

Recently, grafting has been used to improve abiotic stress resistance in crops. Here, using watermelon ‘Zaojia 8424’ (Citrullus lanatus) as scions, three different gourds (Lagenaria siceraria, 0526, 2505, and 1226) as rootstocks, and non-grafted plants as controls (different plants were abbreviated as 0526, 2505, 1226, and 8424), the effect of cold stress on various physiological and molecular parameters was investigated. The results demonstrate that the improved cold tolerance of gourd-grafted watermelon was associated with higher chlorophyll and proline content, and lower malondialdehyde (MDA) content, compared to 8424 under cold stress. Furthermore, grafted watermelons accumulated fewer reactive oxygen species (ROS), accompanied by enhanced antioxidant activity and a higher expression of enzymes related to the Calvin cycle. In conclusion, watermelons with 2505 and 0526 rootstocks were more resilient compared to 1226 and 8424. These results confirm that using tolerant rootstocks may be an efficient adaptation strategy for improving abiotic stress tolerance in watermelon.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathaphon Yu King Hing ◽  
Uma K. Aryal ◽  
John A. Morgan

Photoautotrophic microorganisms are increasingly explored for the conversion of atmospheric carbon dioxide into biomass and valuable products. The Calvin-Benson-Bassham (CBB) cycle is the primary metabolic pathway for net CO2 fixation within oxygenic photosynthetic organisms. The cyanobacteria, Synechocystis sp. PCC 6803, is a model organism for the study of photosynthesis and a platform for many metabolic engineering efforts. The CBB cycle is regulated by complex mechanisms including enzymatic abundance, intracellular metabolite concentrations, energetic cofactors and post-translational enzymatic modifications that depend on the external conditions such as the intensity and quality of light. However, the extent to which each of these mechanisms play a role under different light intensities remains unclear. In this work, we conducted non-targeted proteomics in tandem with isotopically non-stationary metabolic flux analysis (INST-MFA) at four different light intensities to determine the extent to which fluxes within the CBB cycle are controlled by enzymatic abundance. The correlation between specific enzyme abundances and their corresponding reaction fluxes is examined, revealing several enzymes with uncorrelated enzyme abundance and their corresponding flux, suggesting flux regulation by mechanisms other than enzyme abundance. Additionally, the kinetics of 13C labeling of CBB cycle intermediates and estimated inactive pool sizes varied significantly as a function of light intensity suggesting the presence of metabolite channeling, an additional method of flux regulation. These results highlight the importance of the diverse methods of regulation of CBB enzyme activity as a function of light intensity, and highlights the importance of considering these effects in future kinetic models.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guillaume Bayon-Vicente ◽  
Elie Marchand ◽  
Jeson Ducrotois ◽  
François E. Dufrasne ◽  
Regis Hallez ◽  
...  

Purple non-sulfur bacteria (PNSB) are recognized as a highly versatile group of bacteria that assimilate a broad range of carbon sources. Growing heterotrophically, PNSB such as Rhodospirillum rubrum (Rs. rubrum) generate reduced equivalents that are used for biomass production. However, under photoheterotrophic conditions, more reduced electron carriers than required to produce biomass are generated. The excess of reduced equivalents still needs to be oxidized for the metabolism to optimally operate. These metabolic reactions are known as electron sinks. Most PNSB rely on the CO2-fixing Calvin cycle and H2 production to oxidize these reduced equivalents. In addition to these well-described electron sinks, the involvement of some pathways, such as polyhydroxyalkanoate (PHA) biosynthesis, in redox poise is still controversial and requires further studies. Among them, isoleucine biosynthesis has been recently highlighted as one of these potential pathways. Here, we explore the role of isoleucine biosynthesis in Rs. rubrum. Our results demonstrate that the isoleucine content is higher under illuminated conditions and that submitting Rs. rubrum to light stress further increases this phenomenon. Moreover, we explore the production of (p)ppGpp in Rs. rubrum and its potential link with light stress. We further demonstrate that a fully functional isoleucine biosynthesis pathway could be an important feature for the onset of Rs. rubrum growth under photoheterotrophic conditions even in the presence of an exogenous isoleucine source. Altogether, our data suggest that isoleucine biosynthesis could play a key role in redox homeostasis.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
P Mala ◽  
P G Pramodkumar ◽  
S Sunita ◽  
D Debjani

Modern-day agriculture is facing the challenge of sustaining global food security. However, the rapid increase in salinity stress among arable areas poses a major threat to crop health and yield. Salinity stress is one of the most common and rapidly spreading stress that has a detrimental effect on the productivity of edible plant family i.e. Cucurbitaceae. The present study endeavors to evaluate the Osmoregulators (anti-oxidants and proteins), that supports the growth of two varieties of Luffa acutangula (L.) Roxb. under salt stress. The 2-3 weeks old saplings were exposed to salt stress (up to 200 mM NaCl) for one week. Post-treatment the osmoregulatory metabolites like Trehalose, Proline & enzymic anti-oxidants like peroxidase (POD), Superoxide dismutase (SOD) and proteins using LC-MS/MS were analyzed. In both the varieties, Trehalose increased with increasing salt concentration, while the level of Proline increased in Variety 1 and decreased in Variety 2. With increasing salt concentrations, the POD activity decreased in both varieties whereas that of SOD levels increased in Variety 2 and decreased in Variety 1. The protein identified by LC-MS/MS and functional annotation analysis employing Uniport database & BlastP algorithm, aided in the detection of differentially expressed proteins in response to salt stress. This was followed by metabolic interaction annotation enrichment analysis by FunRich 3.0 tool, enabling characterization of proteins to be involved in the Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defence, hormonal biosynthesis and signal transduction. The augmentation of the metabolic activities of the Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and the tricarboxylic acid cycle will conceivably influence the photosynthetic capacity in L. acutangula varieties under salt stress. The upsurge of key enzymes involved in these above described biological processes possibly appears to play an important role in the enhancement of salt tolerance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Xu ◽  
Xiaomin Tian ◽  
Tingting Ku ◽  
Guangyuan Wang ◽  
Enying Zhang

Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 755
Author(s):  
Xiaoying Wu ◽  
Rayyan Khan ◽  
Huajun Gao ◽  
Haobao Liu ◽  
Juan Zhang ◽  
...  

Shading or low light (LL) conditions are a key and necessary cultivation technique in cigar wrapper tobacco production. However, the effect of low light on the photosynthesis in cigar tobacco is not clear. Therefore, this study is designed to know the photosynthesis of cigar tobacco under different light intensities (T200, T100, and T50 μmol m−2 s−1). The results reveal that under low light, T50 especially improved the light interception and increased carbon utilization, as witnessed by a higher specific leaf area and lower specific leaf weight. Low light intensity caused better light interception and carbon utilization in cigar tobacco leaves, and thus thinner leaves are more able to use low light efficiently. The chlorophyll content is related to the photosynthesis process; thus, LL affected the photosynthesis process by lowering the chlorophyll content. Similarly, LL also altered the photosynthetic efficiency by lowering the QY_Lss, qP_Lss, and Rfd_Lss. Additionally, higher expression of Lhcb4.2, Lhcb6, PsbA, PsbB, and PsbD under low light, especially T50, shows that the PSII and antenna proteins complex efficiently utilized the absorbed energy for photosynthesis. Finally, the lower photosynthesis, particularly in T50, is attributed to the downregulation of genes related to NADPH production (petH) and the rubisco enzyme synthesis-related gene (rbcs) for CO2 fixation in the Calvin cycle. Overall, the results show that the photosynthesis is decreased under LL intensities which might be related to lower chlorophyll content and downregulation of petH and rbcs genes.


Author(s):  
Calvin A. Henard ◽  
Chao Wu ◽  
Wei Xiong ◽  
Jessica M. Henard ◽  
Brett Davidheiser-Kroll ◽  
...  

The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we identified that CO 2 was requisite for RubisCO-encoding Methylococcus capsulatus Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO 2 assimilation during cultivation with both CH 4 and CO 2 as carbon sources. Marker-exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO 2 -assimilating metabolic pathways indicated that a complete serine cycle is not required while RubisCO is essential for growth of this bacterium. 13 CO 2 tracer analysis showed that CH 4 and CO 2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO 2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13 C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO 2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO 2 via RubisCO, which may play a more pivotal role in the Earth’s biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO 2 -assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH 4 and CO 2 . Importance The importance of RubisCO and CO 2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO 2 and RubisCO are essential for M. capsulatus Bath growth. 13 CO 2 tracing experiments supported that RubisCO mediates CO 2 fixation and a non-canonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dual CH 4 /CO 2 -utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO 2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases CH 4 and CO 2 .


2021 ◽  
Author(s):  
Jie Li ◽  
Hamza Sohail ◽  
Muhammad Azher Nawaz ◽  
Chaowei Liu ◽  
Ping Yang

Abstract Brassinosteroids (BRs) are important in plant resistance to chilling stress. However, limited information is available regarding the specific mechanisms involved at proteomic level. We utilized iTRAQ proteomic approach, physiological assays and information obtained from cellular ultrastructure to clarify the underlying molecular mechanism of BRs to alleviate chilling stress in pepper (Capsicum annuum L.). Foliar application of 24-epibrassinolide (EBR) improved photosynthesis and improved cell structure by presenting a distinct mesophyll cell and chloroplast with well-developed thylakoid membranes in the leaves of pepper seedlings. We identified 346 differentially expressed proteins (DEPs), including 217 up-regulated proteins and 129 down-regulated proteins in plants under chilling (Chill) and Chill + EBR treated plants. Most of the DEPs were related to multiple pathways, including photosynthesis, carbohydrates metabolism, energy metabolism, protein biosynthesis, amino acids synthesis, redox and stress defence (ascorbate peroxidase, glutathione peroxidase, and superoxide dismutase). Up-regulated DEPs were associated with photosynthetic electron transfer chain, oxidative phosphorylation, GSH metabolism pathway, Calvin cycle and signaling pathway. The physiochemical analysis showed that EBR treatment improved the tolerance of pepper seedlings to chilling stress.


Sign in / Sign up

Export Citation Format

Share Document