Faculty Opinions recommendation of Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing.

Author(s):  
Tamar Schlick
Nature ◽  
2004 ◽  
Vol 430 (6997) ◽  
pp. 377-380 ◽  
Author(s):  
Deepak T. Nair ◽  
Robert E. Johnson ◽  
Satya Prakash ◽  
Louise Prakash ◽  
Aneel K. Aggarwal

DNA Repair ◽  
2014 ◽  
Vol 22 ◽  
pp. 67-76 ◽  
Author(s):  
Alena V. Makarova ◽  
Artem Ignatov ◽  
Nataliya Miropolskaya ◽  
Andrey Kulbachinskiy

2020 ◽  
Vol 48 (9) ◽  
pp. 5119-5134 ◽  
Author(s):  
Myong-Chul Koag ◽  
Hunmin Jung ◽  
Seongmin Lee

Abstract Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson–Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polβ decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16612 ◽  
Author(s):  
Alena V. Makarova ◽  
Corinn Grabow ◽  
Leonid V. Gening ◽  
Vyacheslav Z. Tarantul ◽  
Tahir H. Tahirov ◽  
...  

2000 ◽  
Vol 20 (19) ◽  
pp. 7099-7108 ◽  
Author(s):  
Yanbin Zhang ◽  
Fenghua Yuan ◽  
Xiaohua Wu ◽  
Zhigang Wang

ABSTRACT DNA polymerase activity is essential for replication, recombination, repair, and mutagenesis. All DNA polymerases studied so far from any biological source synthesize DNA by the Watson-Crick base-pairing rule, incorporating A, G, C, and T opposite the templates T, C, G, and A, respectively. Non-Watson-Crick base pairs would lead to mutations. In this report, we describe the ninth human DNA polymerase, Polι, encoded by the RAD30B gene. We show that human Polι violates the Watson-Crick base-pairing rule opposite template T. During base selection, human Polι preferred T-G base pairing, leading to G incorporation opposite template T. The resulting T-G base pair was less efficiently extended by human Polι compared to the Watson-Crick base pairs. Consequently, DNA synthesis frequently aborted opposite template T, a property we designated the T stop. This T stop restricted human Polι to a very short stretch of DNA synthesis. Furthermore, kinetic analyses show that human Polι copies template C with extraordinarily low fidelity, misincorporating T, A, and C with unprecedented frequencies of 1/9, 1/10, and 1/11, respectively. Human Polι incorporated one nucleotide opposite a template abasic site more efficiently than opposite a template T, suggesting a role for human Polι in DNA lesion bypass. The unique features of preferential G incorporation opposite template T and T stop suggest that DNA Polι may additionally play a specialized function in human biology.


2012 ◽  
Vol 134 (25) ◽  
pp. 10698-10705 ◽  
Author(s):  
Amit Ketkar ◽  
Maroof K. Zafar ◽  
Surajit Banerjee ◽  
Victor E. Marquez ◽  
Martin Egli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document