nucleotide analogue
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 5)

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1620
Author(s):  
Dharmendra Kumar Yadav ◽  
Desh Deepak Singh ◽  
Ihn Han ◽  
Yogesh Kumar ◽  
Eun-Ha Choi

The ongoing SARS-CoV-2 pandemic is a serious threat to public health worldwide and, to date, no effective treatment is available. Thus, we herein review the pharmaceutical approaches to SARS-CoV-2 infection treatment. Numerous candidate medicines that can prevent SARS-CoV-2 infection and replication have been proposed. These medicines include inhibitors of serine protease TMPRSS2 and angiotensin converting enzyme 2 (ACE2). The S protein of SARS-CoV-2 binds to the receptor in host cells. ACE2 inhibitors block TMPRSS2 and S protein priming, thus preventing SARS-CoV-2 entry to host cells. Moreover, antiviral medicines (including the nucleotide analogue remdesivir, the HIV protease inhibitors lopinavir and ritonavir, and wide-spectrum antiviral antibiotics arbidol and favipiravir) have been shown to reduce the dissemination of SARS-CoV-2 as well as morbidity and mortality associated with COVID-19.


2021 ◽  
pp. 101345
Author(s):  
Georgy M. Solius ◽  
Dmitry I. Maltsev ◽  
Vsevolod V. Belousov ◽  
Oleg V. Podgorny

2021 ◽  
Vol 9 (09) ◽  
pp. 128-131
Author(s):  
Pydala Sai Prasanna ◽  
◽  
Ragam Swetha Samrajyam ◽  
Kasani Chitti Ramya ◽  
Ambati Sujatha ◽  
...  

We look at the clinical development of remdesivir, a prodrug that has been shown to inhibit SARS-CoV-2 replication, indicating that it could be used to treat COVID-19. Remdesivir is a nucleotide analogue prodrug that disrupts viral replication and was first tested in clinical trials in 2014 to combat the Ebola outbreak.The ability of remdesivir to inhibit coronavirus replication, including SARS-CoV-2, was later demonstrated by numerous virology laboratories. Well go over how remdesivir was discovered, how it works, and what studies are currenty being done to see how effective it is in the clinic.


2021 ◽  
Author(s):  
Kazushi Fujimoto ◽  
Youhei Yamaguchi ◽  
Ryo Urano ◽  
Wataru Shinoda ◽  
Tetsuya Ishikawa ◽  
...  

Immature hepatitis B virus (HBV) captures nucleotides in its capsid for reverse transcription. The nucleotides and nucleotide analogue drugs, which are triphosphorylated and negatively charged in the cell, approach the capsid via diffusion and are absorbed into it. In this study, we performed a long-time molecular dynamics (MD) calculation of the entire HBV capsid containing pregenome RNA to investigate the interactions between the capsid and negatively charged substances. Electric field analysis demonstrated that negatively charged substances can approach the HBV capsid by thermal motion, avoiding spikes. The substances then migrate all over the floor of the HBV capsid. Finally, they find pores through which they can pass through the HBV capsid shell. Free energy profiles were calculated along these pores for small ions to understand their permeability through the pores. Anions (Cl-) showed higher free energy barriers than cations (Na+ and K+) through all pores, and the permeation rate of Cl- was eight times slower than that of K+ or Na+. Furthermore, the ions were more stable in the capsid than in the bulk water. Thus, the HBV capsid exerts ion selectivity for uptake and provides an environment for ions, such as nucleotides and nucleotide analogue drugs, to be stabilized within the capsid.


2021 ◽  
Author(s):  
Chao Qi ◽  
Pia Lavriha ◽  
Ved Mehta ◽  
Basavraj Khanppnavar ◽  
Inayathulla Mohammed ◽  
...  

Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four new conformations show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation.


2021 ◽  
Author(s):  
Moises Ernesto Romero ◽  
Chunhong Long ◽  
Daniel La Rocco ◽  
Anusha Mysore Keerthi ◽  
Dajun Xu ◽  
...  

Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further interfere with the viral genome replication. In this work, we computationally studied how RDV-TP binds and inserts to the SARS-CoV-2 RdRp active site, in comparison with natural nucleotide substrate adenosine triphosphate (ATP). To do that, we first constructed atomic structural models of an initial binding complex (active site open) and a substrate insertion complex (active site closed), based on high-resolution cryo-EM structures determined recently for SARS-CoV-2 RdRp or non-structural protein (nsp) 12, in complex with accessory protein factors nsp7 and nsp8. By conducting all-atom molecular dynamics simulation with umbrella sampling strategies on the nucleotide insertion between the open and closed state RdRp complexes, our studies show that RDV-TP can bind comparatively stabilized to the viral RdRp active site, as it primarily forms base stacking with the template Uracil nucleotide (at +1), which is under freely fluctuations and supports a low free energy barrier of the RDV-TP insertion (~ 1.5 kcal/mol). In comparison, the corresponding natural substrate ATP binds to the RdRp active site in Watson-Crick base pairing with the template nt, and inserts into the active site with a medium low free energy barrier (~ 2.6 kcal/mol), when the fluctuations of the template nt are well quenched. The simulations also show that the initial base stacking of RDV-TP with the template can be particularly stabilized by motif B-N691, S682, and motif F-K500 with the sugar, base, and the template backbone, respectively. Although the RDV-TP insertion can be hindered by motif-F R555/R553 interaction with the triphosphate, the ATP insertion seems to be facilitated by such interactions. The inserted RDV-TP and ATP can be further distinguished by specific sugar interaction with motif B-T687 and motif-A D623, respectively.


Author(s):  
James M. Wood ◽  
Gary B. Evans ◽  
Tyler L. Grove ◽  
Steven C. Almo ◽  
Scott A. Cameron ◽  
...  

2021 ◽  
Vol 46 (8) ◽  
pp. 359-369
Author(s):  
Shota Yanagida ◽  
Ayano Satsuka ◽  
Sayo Hayashi ◽  
Atsushi Ono ◽  
Yasunari Kanda
Keyword(s):  
Ips Cell ◽  

Author(s):  
Moises Ernesto Romero ◽  
Chunhong Long ◽  
Daniel La Rocco ◽  
Anusha Mysore Keerthi ◽  
Dajun Xu ◽  
...  

Remdesivir (RDV) prodrug can be metabolized into a triphosphate form nucleotide analogue (RDV-TP) to bind and insert into the active site of viral RNA dependent RNA polymerase (RdRp) to further...


Sign in / Sign up

Export Citation Format

Share Document