Faculty Opinions recommendation of Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo.

Author(s):  
Ann Hill
2010 ◽  
Vol 137 (2) ◽  
pp. 221-233 ◽  
Author(s):  
B.J.R Sluijter ◽  
M.F.C.M. van den Hout ◽  
A.G.M. Stam ◽  
S.M. Lougheed ◽  
M.M. Suhoski ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (9) ◽  
pp. 1776-1783 ◽  
Author(s):  
Christopher A. Klebanoff ◽  
Zhiya Yu ◽  
Leroy N. Hwang ◽  
Douglas C. Palmer ◽  
Luca Gattinoni ◽  
...  

Abstract Naive and memory CD8+ T cells can undergo programmed activation and expansion in response to a short T-cell receptor stimulus, but the extent to which in vitro programming can qualitatively substitute for an in vivo antigen stimulation remains unknown. We show that self-/tumor-reactive effector memory CD8+ T cells (TEM) programmed in vitro either with peptide-pulsed antigen-presenting cells or plate-bound anti-CD3/anti-CD28 embark on a highly stereotyped response of in vivo clonal expansion and tumor destruction nearly identical to that of vaccine-stimulated TEM cells. This programmed response was associated with an interval of antigen-independent interferon-γ (IFN-γ) release that facilitated the dynamic expression of the major histocompatibility complex class I restriction element H-2Db on responding tumor cells, leading to recognition and subsequent tumor lysis. Delaying cell transfer for more than 24 hours after stimulation or infusion of cells deficient in IFN-γ entirely abrogated the benefit of the programmed response, whereas transfer of cells unable to respond to IFN-γ had no detriment to antitumor immunity. These findings extend the phenomenon of a programmable effector response to memory CD8+ T cells and have major implications for the design of current adoptive-cell transfer trials.


2010 ◽  
Vol 23 (4) ◽  
pp. 194-203 ◽  
Author(s):  
Kiyoshi Setoguchi ◽  
Hidehiro Kishimoto ◽  
Sakiko Kobayashi ◽  
Hiroaki Shimmura ◽  
Hideki Ishida ◽  
...  

2016 ◽  
Vol 213 (13) ◽  
pp. 3057-3073 ◽  
Author(s):  
Shiki Takamura ◽  
Hideki Yagi ◽  
Yoshiyuki Hakata ◽  
Chihiro Motozono ◽  
Sean R. McMaster ◽  
...  

CD8+ tissue-resident memory T cells (TRM cells) reside permanently in nonlymphoid tissues and provide a first line of protection against invading pathogens. However, the precise localization of CD8+ TRM cells in the lung, which physiologically consists of a markedly scant interstitium compared with other mucosa, remains unclear. In this study, we show that lung CD8+ TRM cells localize predominantly in specific niches created at the site of regeneration after tissue injury, whereas peripheral tissue-circulating CD8+ effector memory T cells (TEM cells) are widely but sparsely distributed in unaffected areas. Although CD69 inhibited sphingosine 1–phosphate receptor 1–mediated egress of CD8+ T cells immediately after their recruitment into lung tissues, such inhibition was not required for the retention of cells in the TRM niches. Furthermore, despite rigid segregation of TEM cells from the TRM niche, prime-pull strategy with cognate antigen enabled the conversion from TEM cells to TRM cells by creating de novo TRM niches. Such damage site–specific localization of CD8+ TRM cells may be important for efficient protection against secondary infections by respiratory pathogens.


2020 ◽  
Vol 355 ◽  
pp. 104155
Author(s):  
Min Sun Shin ◽  
Dongjoo Kim ◽  
Kristina Yim ◽  
Hong-Jai Park ◽  
Sungyong You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document