Faculty Opinions recommendation of In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats.

Author(s):  
Gerard Muyzer
2006 ◽  
Vol 103 (7) ◽  
pp. 2398-2403 ◽  
Author(s):  
Anne-Soisig Steunou ◽  
Devaki Bhaya ◽  
Mary M. Bateson ◽  
Melanie C. Melendrez ◽  
David M. Ward ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 652
Author(s):  
Shigeru Kawai ◽  
Joval N. Martinez ◽  
Mads Lichtenberg ◽  
Erik Trampe ◽  
Michael Kühl ◽  
...  

Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.


2010 ◽  
Vol 192 (12) ◽  
pp. 3033-3042 ◽  
Author(s):  
Marcel T. J. van der Meer ◽  
Christian G. Klatt ◽  
Jason Wood ◽  
Donald A. Bryant ◽  
Mary M. Bateson ◽  
...  

ABSTRACT Roseiflexus sp. strains were cultivated from a microbial mat of an alkaline siliceous hot spring in Yellowstone National Park. These strains are closely related to predominant filamentous anoxygenic phototrophs found in the mat, as judged by the similarity of small-subunit rRNA, lipid distributions, and genomic and metagenomic sequences. Like a Japanese isolate, R. castenholzii, the Yellowstone isolates contain bacteriochlorophyll a, but not bacteriochlorophyll c or chlorosomes, and grow photoheterotrophically or chemoheterotrophically under dark aerobic conditions. The genome of one isolate, Roseiflexus sp. strain RS1, contains genes necessary to support these metabolisms. This genome also contains genes encoding the 3-hydroxypropionate pathway for CO2 fixation and a hydrogenase, which might enable photoautotrophic metabolism, even though neither isolate could be grown photoautotrophically with H2 or H2S as a possible electron donor. The isolates exhibit temperature, pH, and sulfide preferences typical of their habitat. Lipids produced by these isolates matched much better with mat lipids than do lipids produced by R. castenholzii or Chloroflexus isolates.


2011 ◽  
Vol 77 (15) ◽  
pp. 5458-5466 ◽  
Author(s):  
William C. Nelson ◽  
Lori Wollerman ◽  
Devaki Bhaya ◽  
John F. Heidelberg

ABSTRACTInsertion sequences (ISs) are simple mobile genetic elements capable of relocating within a genome. Through this transposition activity, they are known to create mutations which are mostly deleterious to the cell, although occasionally they are beneficial. Two closely related isolates of thermophilicSynechococcusspecies from hot spring microbial mats are known to harbor a large number of diverse ISs. To explore the mechanism of IS acquisition within natural populations and survival in the face of high IS abundance, we examined IS content and location in natural populations ofSynechococcusby comparing metagenomic data to the genomes of fully sequenced cultured isolates. The observed IS distribution in the metagenome was equivalent to the distribution in the isolates, indicating that the cultured isolates are appropriate models for the environmental population. High sequence conservation between IS families shared between the two isolates suggests that ISs are able to move between individuals within populations and between species via lateral gene transfer, consistent with models for IS family accumulation. Most IS families show evidence of recent activity, and interruption of critical genes in some individuals was observed, demonstrating that transposition is an ongoing mutational force in the populations.


2005 ◽  
Vol 71 (7) ◽  
pp. 3978-3986 ◽  
Author(s):  
Marcel T. J. van der Meer ◽  
Stefan Schouten ◽  
Mary M. Bateson ◽  
Ulrich Nübel ◽  
Andrea Wieland ◽  
...  

ABSTRACT Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic carbon only during certain times of the day. In order to study temporal variability in carbon metabolism by GNSLB, labeling experiments with [13C]bicarbonate, [14C]bicarbonate, and [13C]acetate were performed during different times of the day. [14C]bicarbonate labeling indicated that during the morning, incorporation of label was light dependent and that both cyanobacteria and GNSLB were involved in bicarbonate uptake. 13C-labeling experiments indicated that during the morning, GNSLB incorporated labeled bicarbonate at least to the same degree as cyanobacteria. The incorporation of [13C]bicarbonate into specific lipids could be stimulated by the addition of sulfide or hydrogen, which both were present in the morning photic zone. The results suggest that GNSLB have the potential for photoautotrophic metabolism during low-light periods. In high-light periods, inorganic carbon was incorporated primarily into Cyanobacteria-specific lipids. The results of a pulse-labeling experiment were consistent with overnight transfer of label to GNSLB, which could be interrupted by the addition of unlabeled acetate and glycolate. In addition, we observed direct incorporation of [13C]acetate into GNSLB lipids in the morning. This suggests that GNSLB also have a potential for photoheterotrophy in situ.


2002 ◽  
Vol 68 (9) ◽  
pp. 4593-4603 ◽  
Author(s):  
Ulrich Nübel ◽  
Mary M. Bateson ◽  
Verona Vandieken ◽  
Andrea Wieland ◽  
Michael Kühl ◽  
...  

ABSTRACT We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S rRNA genes, an unexpectedly large phylogenetic diversity among these bacteria was detected. Oligonucleotide probes were designed to target 16S rRNAs from organisms affiliated with the genus Chloroflexus or with the type C cluster, a group of previously discovered Chloroflexaceae relatives of this mat community. The application of peroxidase-labeled probes in conjunction with tyramide signal amplification enabled the identification of these organisms within the microbial mats by fluorescence in situ hybridization (FISH) and the investigation of their morphology, abundance, and small-scale distribution. FISH was combined with oxygen microelectrode measurements, microscope spectrometry, and microautoradiography to examine their microenvironment, pigmentation, and carbon source usage. Abundant type C-related, filamentous bacteria were found to flourish within the cyanobacterium-dominated, highly oxygenated top layers and to predominate numerically in deeper orange-colored zones of the investigated microbial mats, correlating with the distribution of bacteriochlorophyll a. Chloroflexus sp. filaments were rare at 60°C but were more abundant at 70°C, where they were confined to the upper millimeter of the mat. Both type C organisms and Chloroflexus spp. were observed to assimilate radiolabeled acetate under in situ conditions.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 640
Author(s):  
Meijin Li ◽  
Lei Cheng ◽  
Jie Tang ◽  
Maurycy Daroch

Thermoleptolyngbya is a genus of non-heterocystous cyanobacteria that are typical inhabitants of hot spring microbial mats. These filamentous cyanobacteria are capable of nitrogen fixation. In this study, we examined the genome sequences of five publicly available Thermoleptolyngbya strains to explore their nitrogen fixation gene cluster. Analysis of the nitrogen-fixation clusters in these extremophilic strains revealed that the cluster is located in a single locus in Thermoleptolyngbyace. The average nucleotide and amino acid identities of the nitrogen-fixation cluster combined with phylogenetic reconstructions support that nitrogen fixation genes in Thermoleptolyngbyaceae are closely related to one another but also heterogeneous within the genus. The strains from Asia, and China more specifically, generate a separate clade within the genus. Among these strains Thermoleptolyngbya sp. PKUAC-SCTB121 has been selected for experimental validation of clade’s nitrogen fixation capacity. The acetylene reduction experiments of that strain shown that the strain can reduce acetylene to ethylene, indicating a fully functional nitrogenase. The activity of nitrogenase has been tested using different gas compositions across 72 h and exhibited a two-phase trend, high nitrogenase activity at the beginning of the assay that slowed down in the second phase of the analysis.


2021 ◽  
Author(s):  
Andrew C. Bauer ◽  
James R. Forsythe ◽  
Jay Sitaraman ◽  
Andrew M. Wissink ◽  
Buvaneswari Jayaraman ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document