metabolic switching
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 2)

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 811
Author(s):  
Xunzhe Yin ◽  
Wenbo Li ◽  
Jiaxin Zhang ◽  
Wenjing Zhao ◽  
Huaxing Cai ◽  
...  

Targeting cancer cell metabolism has been an attractive approach for cancer treatment. However, the role of metabolic alternation in cancer is still unknown whether it functions as a tumor promoter or suppressor. Applying the cancer gene-metabolism integrative network model, we predict adenosine monophosphate-activated protein kinase (AMPK) to function as a central hub of metabolic landscape switching in specific liver cancer subtypes. For the first time, we demonstrate that the phytochemical levo-tetrahydropalmatine (L-THP), a Corydalis yanhusuo-derived clinical drug, as an AMPK activator via autophagy-mediated metabolic switching could kill the hepatocellular carcinoma HepG2 cells. Mechanistically, L-THP promotes the autophagic response by activating the AMPK-mTOR-ULK1 and the ROS-JNK-ATG cascades and impairing the ERK/AKT signaling. All these processes ultimately synergize to induce the decreased mitochondrial oxidative phosphorylation (OXPHOS) and mitochondrial damage. Notably, silencing AMPK significantly inhibits the autophagic flux and recovers the decreased OXPHOS metabolism, which results in HepG2 resistance to L-THP treatment. More importantly, L-THP potently reduces the growth of xenograft HepG2 tumor in nude mice without affecting other organs. From this perspective, our findings support the conclusion that metabolic change is an alternative approach to influence the development of HCC.


2021 ◽  
Vol 22 (16) ◽  
pp. 8429
Author(s):  
Natalia Kučić ◽  
Valentino Rački ◽  
Roberta Šverko ◽  
Toni Vidović ◽  
Irena Grahovac ◽  
...  

Naltrexone is an opioid receptor antagonist commonly used to treat opioid and alcohol dependence. The use of low dose naltrexone (LDN) was found to have anti-inflammatory properties for treatment of diseases such as fibromyalgia, Crohn’s disease, multiple sclerosis and regional pain syndromes. Related to its anti-neuroinflammatory properties, the mechanism of action is possibly mediated via Toll-like receptor 4 antagonism, which is widely expressed on microglial cells. The aim of the present study was to assess the immunometabolic effects of naltrexone on microglia cells in in vitro conditions. Methods: All experiments were performed in the BV-2 microglial cell line. The cells were treated with naltrexone at 100 μM concentrations corresponding to low dose for 24 h. Cell viability was assessed for every drug dose. To induce additional activation, the cells were pretreated with LPS and IFN-γ. Immunofluorescence was used to analyse the classical microglial activation markers iNOS and CD206, while Seahorse was used for real-time cellular metabolic assessments. mTOR activity measured over the expression of a major direct downstream target S6K was assessed using western blot. Results: LDN induced a shift from highly activated pro-inflammatory phenotype (iNOShighCD206low) to quiescent anti-inflammatory M2 phenotype (iNOSlowCD206high) in BV-2 microglia cells. Changes in the inflammatory profile were accompanied by cellular metabolic switching based on the transition from high glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). LDN-treated cells were able to maintain a metabolically suppressive phenotype by supporting OXPHOS with high oxygen consumption, and also maintain a lower energetic state due to lower lactate production. The metabolic shift induced by transition from glycolysis to mitochondrial oxidative metabolism was more prominent in cells pretreated with immunometabolic modulators such as LPS and IFN-γ. In a dose-dependent manner, naltrexone also modulated mTOR/S6K expression, which underlies the cell metabolic phenotype regulating microglia immune properties and adaptation. Conclusion: By modulating the phenotypic features by metabolic switching of activated microglia, naltrexone was found to be an effective and powerful tool for immunometabolic reprogramming and could be a promising novel treatment for various neuroinflammatory conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuichi Saito ◽  
Wataru Kimura

The oxidation reaction greatly alters characteristics of various cellular components. In exchange for efficient energy production, mitochondrial aerobic respiration substantially increases the risk of excess oxidation of cellular biomolecules such as lipids, proteins, nucleic acids, and numerous small molecules. To maintain a physiologically balanced cellular reduction-oxidation (redox) state, cells utilize a variety of molecular machineries including cellular antioxidants and protein degradation complexes such as the ubiquitin-proteasome system or autophagy. In the past decade, biomolecular liquid-liquid phase separation (LLPS) has emerged as a subject of great interest in the biomedical field, as it plays versatile roles in the maintenance of cellular homeostasis. With regard to redox homeostasis, LLPS arose as a major player in both well-characterized and newly emerging redox pathways. LLPS is involved in direct redox imbalance sensing, signal transduction, and transcriptional regulation. Also, LLPS is at play when cells resist redox imbalance through metabolic switching, translational remodeling, activating the DNA damage response, and segregation of vulnerable lipids and proteins. On the other hand, chronic accumulation of phase-separated molecular condensates such as lipid droplets and amyloid causes neurotoxic outcomes. In this review we enumerate recent progress on understanding how cells utilize LLPS to deal with oxidative stress, especially related to cell survival or pathogenesis, and we discuss future research directions for understanding biological phase separation in cellular redox regulation.


2021 ◽  
Author(s):  
Zhou Songyang ◽  
Jingran Zhang ◽  
Guang Shi ◽  
Junjie Pang ◽  
Xing Zhu ◽  
...  

Abstract Post-translational modifications of proteins are crucial to the regulation of their activity and function. As a newly discovered acylation modification, crotonylation of non-histone proteins remains largely unexplored, particularly in human embryonic stem cells (hESCs). Here we report the investigation of induced crotonylation in hESCs, which resulted in hESCs of different pluripotency states differentiating into the endodermal lineage. We showed that increased protein crotonylation in hESCs was accompanied by transcriptomic shifts and decreased glycolysis. Through large-scale profiling of non-histone protein crotonylation, we identified metabolic enzymes as major targets of inducible crotonylation in hESCs. We further discovered GAPDH as a key glycolytic enzyme regulated by crotonylation during endodermal differentiation from hESCs, where crotonylation of GAPDH decreased its enzymatic activity thereby leading to reduced glycolysis. Our study demonstrates that crotonylation of glycolytic enzymes may be crucial to metabolic switching and cell fate determination in hESCs.


2021 ◽  
Author(s):  
Tanwee Das De ◽  
Punita Sharma ◽  
Sanjay Tevatiya ◽  
Charu Chauhan ◽  
Seena Kumari ◽  
...  

Abstract Background: Periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as ‘metabolic switch. Although the down-regulation of olfactory factors is key to restrain host-attraction, how the gut ‘metabolic switch’ modulates brain functions, and resilience physiological homeostasis remains unexplored. Methods: To uncover a possible correlation of gut metabolic switching and brain function, we carried out a comparative RNAseq analysis of naïve and blood-fed mosquito’s brain. Spatio-temporal expression of neuro-signaling and neuro-modulatory genes was monitored through Real-Time PCR. To establish a proof-of-concept, we followed LC/MS-based absolute quantification of different neurotransmitters (NT) and compared their levels in the brain as well as in the gut of the mosquitoes. To correlate how microbiome influences gut-brain-axis communication, we performed a comparative gut metagenomic analysis. Results: Our findings demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly to cause a shift of the brain’s engagement to manage organismal homeostasis. A dynamic expression pattern of neuro-signaling and neuro-modulatory genes in both gut and brain, presumably a key to establish an active brain-distant organ communication. Disruption of this comunication through decapitation, does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of the Neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut’s ability to serve as a ‘second brain’. Finally, a comparative metagenomics evaluation of gut microbiome population dynamics, highlighted that blood-feeding not only suppresses Enterobacteriaceae family member by 50%, but favors rapid proliferation of Pseudomonadales to 46% of the total community. Notable obesrvation of a rapid proliferation of Pseudomonas bacterial sp. in the gut correlates a possible cause for the suppression of appetite after blood-feeding. Additionally, an altered NTs dynamics of naïve and aseptic mosquitoes provide the initial evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Conclusion: Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.


2020 ◽  
Vol 319 (4) ◽  
pp. R476-R484
Author(s):  
Alan J. Mouton ◽  
John E. Hall

Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling and adaptation to injury. Here, we discuss recent advances and insights into nonmyocyte metabolism in the healthy and injured heart. Metabolic switching from mitochondrial oxidative phosphorylation to glycolysis is critical for immune cell (macrophage and T lymphocyte) and fibroblast phenotypic switching in the inflamed and fibrotic heart. On the other hand, cardiac endothelial cells are heavily reliant on glycolytic metabolism, and thus impairments in glycolytic metabolism underlie endothelial cell dysfunction. Finally, we review current and ongoing metabolic therapies for HF and the potential implications for nonmyocyte metabolism.


2020 ◽  
Vol 13 (03) ◽  
pp. 1555-1562
Author(s):  
Sanjukta Mishra ◽  
Bratati Singh

Sign in / Sign up

Export Citation Format

Share Document