Faculty Opinions recommendation of Discrete residues in the c(2)b domain of synaptotagmin I independently specify endocytic rate and synaptic vesicle size.

Author(s):  
Lennart Brodin
Neuron ◽  
2006 ◽  
Vol 50 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Kira E. Poskanzer ◽  
Richard D. Fetter ◽  
Graeme W. Davis

2000 ◽  
Vol 150 (5) ◽  
pp. 1125-1136 ◽  
Author(s):  
Radhika C. Desai ◽  
Bimal Vyas ◽  
Cynthia A. Earles ◽  
J. Troy Littleton ◽  
Judith A. Kowalchyck ◽  
...  

The synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca2+ sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca2+ ions bind to the membrane proximal C2A domain. However, it is not known whether the C2B domain also functions as a Ca2+-sensing module. Here, we report that Ca2+ drives conformational changes in the C2B domain of synaptotagmin and triggers the homo- and hetero-oligomerization of multiple isoforms of the protein. These effects of Ca2+ are mediated by a set of conserved acidic Ca2+ ligands within C2B; neutralization of these residues results in constitutive clustering activity. We addressed the function of oligomerization using a dominant negative approach. Two distinct reagents that block synaptotagmin clustering potently inhibited secretion from semi-intact PC12 cells. Together, these data indicate that the Ca2+-driven clustering of the C2B domain of synaptotagmin is an essential step in excitation-secretion coupling. We propose that clustering may regulate the opening or dilation of the exocytotic fusion pore.


2011 ◽  
Vol 195 (7) ◽  
pp. 1159-1170 ◽  
Author(s):  
Zhao Wang ◽  
Huisheng Liu ◽  
Yiwen Gu ◽  
Edwin R. Chapman

The synaptic vesicle protein synaptotagmin I (syt) promotes exocytosis via its ability to penetrate membranes in response to binding Ca2+ and through direct interactions with SNARE proteins. However, studies using full-length (FL) membrane-embedded syt in reconstituted fusion assays have yielded conflicting results, including a lack of effect, or even inhibition of fusion, by Ca2+. In this paper, we show that reconstituted FL syt promoted rapid docking of vesicles (<1 min) followed by a priming step (3–9 min) that was required for subsequent Ca2+-triggered fusion between v- and t-SNARE liposomes. Moreover, fusion occurred only when phosphatidylinositol 4,5-bisphosphate was included in the target membrane. This system also recapitulates some of the effects of syt mutations that alter synaptic transmission in neurons. Finally, we demonstrate that the cytoplasmic domain of syt exhibited mixed agonist/antagonist activity during regulated membrane fusion in vitro and in cells. Together, these findings reveal further convergence of reconstituted and cell-based systems.


Synapse ◽  
2008 ◽  
Vol 62 (12) ◽  
pp. 953-957 ◽  
Author(s):  
Yunming Hu ◽  
Lei Qu ◽  
Thomas Schikorski

1997 ◽  
Vol 28 (3) ◽  
pp. 225-231 ◽  
Author(s):  
J Hovorka ◽  
M Langmeier ◽  
P Mareš ◽  
H Koryntová

2003 ◽  
Vol 14 (12) ◽  
pp. 4909-4919 ◽  
Author(s):  
Maria Pennuto ◽  
Dario Bonanomi ◽  
Fabio Benfenati ◽  
Flavia Valtorta

Synaptic vesicle (SV) proteins are synthesized at the level of the cell body and transported down the axon in membrane precursors of SVs. To investigate the mechanisms underlying sorting of proteins to SVs, fluorescent chimeras of vesicle-associated membrane protein (VAMP) 2, its highly homologous isoform VAMP1 and synaptotagmin I (SytI) were expressed in hippocampal neurons in culture. Interestingly, the proteins displayed a diffuse component of distribution along the axon. In addition, VAMP2 was found to travel in vesicles that constitutively fuse with the plasma membrane. Coexpression of VAMP2 with synaptophysin I (SypI), a major resident of SVs, restored the correct sorting of VAMP2 to SVs. The effect of SypI on VAMP2 sorting was dose dependent, being reversed by increasing VAMP2 expression levels, and highly specific, because the sorting of the SV proteins VAMP1 and SytI was not affected by SypI. The cytoplasmic domain of VAMP2 was found to be necessary for both the formation of VAMP2-SypI hetero-dimers and for VAMP2 sorting to SVs. These data support a role for SypI in directing the correct sorting of VAMP2 in neurons and demonstrate that a direct interaction between the two proteins is required for SypI in order to exert its effect.


Sign in / Sign up

Export Citation Format

Share Document