Faculty Opinions recommendation of Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2.

Author(s):  
Jed Sparks
Ecology ◽  
2006 ◽  
Vol 87 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Richard A. Gill ◽  
Laurel J. Anderson ◽  
H. Wayne Polley ◽  
Hyrum B. Johnson ◽  
Robert B. Jackson

2008 ◽  
Vol 14 (12) ◽  
pp. 2910-2922 ◽  
Author(s):  
JOHN LICHTER ◽  
SHARON A. BILLINGS ◽  
SUSAN E. ZIEGLER ◽  
DEEYA GAINDH ◽  
REBECCA RYALS ◽  
...  

2017 ◽  
Vol 5 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Kewat Sanjay Kumar ◽  

Mechanisms governing carbon stabilization in soils have received a great deal of attention in recent years due to their relevance in the global carbon cycle. Two thirds of the global terrestrial organic C stocks in ecosystems are stored in below ground components as terrestrial carbon pools in soils. Furthermore, mean residence time of soil organic carbon pools have slowest turnover rates in terrestrial ecosystems and thus there is vast potential to sequester atmospheric CO2 in soil ecosystems. Depending upon soil management practices it can be served as source or sink for atmospheric CO2. Sustainable management systems and practices such as conservation agriculture, agroforestry and application of biochar are emerging and promising tools for soil carbon sequestration. Increasing soil carbon storage in a system simultaneously improves the soil health by increase in infiltration rate, soil biota and fertility, nutrient cycling and decrease in soil erosion process, soil compaction and C emissions. Henceforth, it is vital to scientifically explore the mechanisms governing C flux in soils which is poorly understood in different ecosystems under anthropogenic interventions making soil as a potential sink for atmospheric CO2 to mitigate climate change. Henceforth, present paper aims to review basic mechanism governing carbon stabilization in soils and new practices and technological developments in agricultural and forest sciences for C sequestration in terrestrial soil ecosystems.


CATENA ◽  
2019 ◽  
Vol 181 ◽  
pp. 104098 ◽  
Author(s):  
Xiang Gu ◽  
Xi Fang ◽  
Wenhua Xiang ◽  
Yelin Zeng ◽  
Shiji Zhang ◽  
...  

2016 ◽  
Vol 368 ◽  
pp. 28-38 ◽  
Author(s):  
Jorge Hernández ◽  
Amabelia del Pino ◽  
Eric D. Vance ◽  
Álvaro Califra ◽  
Fabián Del Giorgio ◽  
...  

2018 ◽  
Author(s):  
Talal Darwish ◽  
Therese Atallah ◽  
Ali Fadel

Abstract. North East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1 : 5 Million) in topsoils (0–30 cm) and subsoils (30–100 cm). The maps showed that 69 % of soil resources present a stock of SOC below the threshold of 30 t ha−1. The stocks varied between ≈ 10 t ha−1 in shrublands and 60 t ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of SIC were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 t ha−1, against 20 to 45 t ha−1 for SOC. This paper also highlights the modest contribution of NENA region to global SOC stock in the topsoil not exceeding 4.1 %. The paper also discusses agricultural practices that are favorable to carbon sequestration. Practices of conservation agriculture could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist especially in aspects related to the effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.


Sign in / Sign up

Export Citation Format

Share Document