Faculty Opinions recommendation of Neurons in the orbitofrontal cortex encode economic value.

Author(s):  
Wolfram Schultz
2020 ◽  
Author(s):  
Matthew P H Gardner ◽  
Geoffrey Schoenbaum

Theories of orbitofrontal cortex (OFC) function have evolved substantially over the last few decades. There is now a general consensus that the OFC is important for predicting aspects of future events and for using these predictions to guide behavior. Yet the precise content of these predictions and the degree to which OFC contributes to agency contingent upon them has become contentious, with several plausible theories advocating different answers to these questions. In this review we will focus on three of these ideas - the economic value, credit assignment, and cognitive map hypotheses – describing both their successes and failures. We will propose that these failures hint at a more nuanced role for the OFC in supporting the proposed functions when an underlying model or map of the causal structures in the environment must be constructed or updated.


2021 ◽  
Vol 118 (30) ◽  
pp. e2022650118
Author(s):  
Alexandre Pastor-Bernier ◽  
Arkadiusz Stasiak ◽  
Wolfram Schultz

Sensitivity to satiety constitutes a basic requirement for neuronal coding of subjective reward value. Satiety from natural ongoing consumption affects reward functions in learning and approach behavior. More specifically, satiety reduces the subjective economic value of individual rewards during choice between options that typically contain multiple reward components. The unconfounded assessment of economic reward value requires tests at choice indifference between two options, which is difficult to achieve with sated rewards. By conceptualizing choices between options with multiple reward components (“bundles”), Revealed Preference Theory may offer a solution. Despite satiety, choices against an unaltered reference bundle may remain indifferent when the reduced value of a sated bundle reward is compensated by larger amounts of an unsated reward of the same bundle, and then the value loss of the sated reward is indicated by the amount of the added unsated reward. Here, we show psychophysically titrated choice indifference in monkeys between bundles of differently sated rewards. Neuronal chosen value signals in the orbitofrontal cortex (OFC) followed closely the subjective value change within recording periods of individual neurons. A neuronal classifier distinguishing the bundles and predicting choice substantiated the subjective value change. The choice between conventional single rewards confirmed the neuronal changes seen with two-reward bundles. Thus, reward-specific satiety reduces subjective reward value signals in OFC. With satiety being an important factor of subjective reward value, these results extend the notion of subjective economic reward value coding in OFC neurons.


2020 ◽  
Author(s):  
Benjamin Hayden ◽  
Yael Niv

Much of traditional neuroeconomics proceeds from the hypothesis that value is reified in the brain, that is, that there are neurons or brain regions whose responses serve the discrete purpose of encoding value. This hypothesis is supported by the finding that the activity of many neurons covaries with subjective value as estimated in specific tasks and has led to the idea that the primary function of the orbitofrontal cortex is to compute and signal economic value. Here we consider an alternative: that economic value, in the cardinal, common-currency sense, is not represented in the brain and used for choice by default. This idea is motivated by consideration of the economic concept of value, which places important epistemic constraints on our ability to identify its neural basis. It is also motivated by the behavioral economics literature, especially work on heuristics, which proposes value-free process models for much if not all of choice. Finally, it is buoyed by recent neural and behavioral findings regarding how animals and humans learn to choose between options. In light of our hypothesis, we critically reevaluate putative neural evidence for the representation of value and explore an alternative: direct learning of action policies. We delineate how this alternative can provide a robust account of behavior that concords with existing empirical data.


Nature ◽  
2006 ◽  
Vol 441 (7090) ◽  
pp. 223-226 ◽  
Author(s):  
Camillo Padoa-Schioppa ◽  
John A. Assad

2007 ◽  
Vol 11 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Camillo Padoa-Schioppa ◽  
John A Assad

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthew PH Gardner ◽  
Jessica C Conroy ◽  
Clay V Styer ◽  
Timothy Huynh ◽  
Leslie R Whitaker ◽  
...  

How are decisions made between different goods? One theory spanning several fields of neuroscience proposes that their values are distilled to a single common neural currency, the calculation of which allows for rational decisions. The orbitofrontal cortex (OFC) is thought to play a critical role in this process, based on the presence of neural correlates of economic value in lateral OFC in monkeys and medial OFC in humans. We previously inactivated lateral OFC in rats without affecting economic choice behavior. Here we inactivated medial OFC in the same task, again without effect. Behavior in the same rats was disrupted by inactivation during progressive ratio responding previously shown to depend on medial OFC, demonstrating the efficacy of the inactivation. These results indicate that medial OFC is not necessary for economic choice, bolstering the proposal that classic economic choice is likely mediated by multiple, overlapping neural circuits.


2018 ◽  
Vol 119 (5) ◽  
pp. 1924-1933 ◽  
Author(s):  
John Tyson-Carr ◽  
Katerina Kokmotou ◽  
Vicente Soto ◽  
Stephanie Cook ◽  
Nicholas Fallon ◽  
...  

The value of environmental cues and internal states is continuously evaluated by the human brain, and it is this subjective value that largely guides decision making. The present study aimed to investigate the initial value attribution process, specifically the spatiotemporal activation patterns associated with values and valuation context, using electroencephalographic event-related potentials (ERPs). Participants completed a stimulus rating task in which everyday household items marketed up to a price of £4 were evaluated with respect to their desirability or material properties. The subjective values of items were evaluated as willingness to pay (WTP) in a Becker-DeGroot-Marschak auction. On the basis of the individual’s subjective WTP values, the stimuli were divided into high- and low-value items. Source dipole modeling was applied to estimate the cortical sources underlying ERP components modulated by subjective values (high vs. low WTP) and the evaluation condition (value-relevant vs. value-irrelevant judgments). Low-WTP items and value-relevant judgments both led to a more pronounced N2 visual evoked potential at right frontal scalp electrodes. Source activity in right anterior insula and left orbitofrontal cortex was larger for low vs. high WTP at ∼200 ms. At a similar latency, source activity in right anterior insula and right parahippocampal gyrus was larger for value-relevant vs. value-irrelevant judgments. A stronger response for low- than high-value items in anterior insula and orbitofrontal cortex appears to reflect aversion to low-valued item acquisition, which in an auction experiment would be perceived as a relative loss. This initial low-value bias occurs automatically irrespective of the valuation context. NEW & NOTEWORTHY We demonstrate the spatiotemporal characteristics of the brain valuation process using event-related potentials and willingness to pay as a measure of subjective value. The N2 component resolves values of objects with a bias toward low-value items. The value-related changes of the N2 component are part of an automatic valuation process.


Sign in / Sign up

Export Citation Format

Share Document