Faculty Opinions recommendation of Non-transcriptional control of DNA replication by c-Myc.

Author(s):  
Anthony Means
2010 ◽  
Author(s):  
Oskar W. Smrzka ◽  
Christina Pöhler ◽  
Maximilian Kauer ◽  
Frank Westermann ◽  
Heinrich Kovar

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Taras Valovka ◽  
Manuela Schönfeld ◽  
Philipp Raffeiner ◽  
Kathrin Breuker ◽  
Theresia Dunzendorfer-Matt ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1064-1077 ◽  
Author(s):  
P R Rhode ◽  
S Elsasser ◽  
J L Campbell

Autonomously replicating sequence (ARS) binding factor 1 (ABF1) is an abundant DNA-binding protein that specifically recognizes the motif RTCRYN5ACG at many sites in the yeast genome, including promoter elements, mating-type silencers, and ARSs. Mutational analysis of these sites suggests that ABF1 is involved in constitutive and carbon source-regulated transcriptional activation, transcriptional silencing, and ARS activity. To better assess the role of ABF1 in DNA replication and transcriptional control, temperature-sensitive lethal mutations in the ABF1 gene were isolated. Several of the abf1(Ts) strains show rapid growth arrest at the nonpermissive temperature. At the semipermissive temperature, these strains show an ARS-specific defect in the mitotic stability of ARS-CEN plasmids, such that the abf1 mutants show defects in ARS function identical to those of mutants bearing the mutations in the cis-acting ABF1 binding sites analyzed previously by numerous investigators. Flow cytometric analysis and in vivo DNA labeling experiments on an alpha-factor synchronized abf1(Ts) strain showed that at the nonpermissive temperature, these cells fail to progress efficiently from G1 through S phase and synthesize DNA at 25% of the level seen in the isogenic ABF1 strain. RNA synthesis is also reduced in the abf1(Ts) strains. In addition, transcriptional activation by an ABF1 binding site upstream activation sequence is completely defective in an abf1(Ts) strain at the semipermissive temperature. These phenotypes provide evidence that the same protein, ABF1, functions in the initiation of DNA replication and transcriptional activation.


2007 ◽  
Vol 35 (5) ◽  
pp. 1369-1371 ◽  
Author(s):  
B. Müller ◽  
J. Blackburn ◽  
C. Feijoo ◽  
X. Zhao ◽  
C. Smythe

In metazoans, accurate replication of chromosomes is ensured by the coupling of DNA synthesis to the synthesis of histone proteins. Expression of replication-dependent histone genes is restricted to S-phase by a combination of cell cycle-regulated transcriptional and post-transcriptional control mechanisms and is linked to DNA replication by a poorly understood mechanism involving checkpoint kinases [Su, Gao, Schneider, Helt, Weiss, O'Reilly, Bohmann and Zhao (2004) EMBO J. 23, 1133–1143; Kaygun and Marzluff (2005) Nat. Struct. Mol. Biol. 12, 794–800]. Here we propose a model for the molecular mechanisms that link these two important processes within S-phase, and propose roles for multiple checkpoints in this mechanism.


2021 ◽  
Vol 22 (12) ◽  
pp. 6168
Author(s):  
Laura Curti ◽  
Stefano Campaner

MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.


Nature ◽  
2007 ◽  
Vol 448 (7152) ◽  
pp. 445-451 ◽  
Author(s):  
David Dominguez-Sola ◽  
Carol Y. Ying ◽  
Carla Grandori ◽  
Luca Ruggiero ◽  
Brenden Chen ◽  
...  

1992 ◽  
Vol 12 (3) ◽  
pp. 1064-1077
Author(s):  
P R Rhode ◽  
S Elsasser ◽  
J L Campbell

Autonomously replicating sequence (ARS) binding factor 1 (ABF1) is an abundant DNA-binding protein that specifically recognizes the motif RTCRYN5ACG at many sites in the yeast genome, including promoter elements, mating-type silencers, and ARSs. Mutational analysis of these sites suggests that ABF1 is involved in constitutive and carbon source-regulated transcriptional activation, transcriptional silencing, and ARS activity. To better assess the role of ABF1 in DNA replication and transcriptional control, temperature-sensitive lethal mutations in the ABF1 gene were isolated. Several of the abf1(Ts) strains show rapid growth arrest at the nonpermissive temperature. At the semipermissive temperature, these strains show an ARS-specific defect in the mitotic stability of ARS-CEN plasmids, such that the abf1 mutants show defects in ARS function identical to those of mutants bearing the mutations in the cis-acting ABF1 binding sites analyzed previously by numerous investigators. Flow cytometric analysis and in vivo DNA labeling experiments on an alpha-factor synchronized abf1(Ts) strain showed that at the nonpermissive temperature, these cells fail to progress efficiently from G1 through S phase and synthesize DNA at 25% of the level seen in the isogenic ABF1 strain. RNA synthesis is also reduced in the abf1(Ts) strains. In addition, transcriptional activation by an ABF1 binding site upstream activation sequence is completely defective in an abf1(Ts) strain at the semipermissive temperature. These phenotypes provide evidence that the same protein, ABF1, functions in the initiation of DNA replication and transcriptional activation.


Sign in / Sign up

Export Citation Format

Share Document