Faculty Opinions recommendation of A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection.

Author(s):  
José Luis Riechmann
2020 ◽  
Author(s):  
Justin A. Bosch ◽  
Berrak Ugur ◽  
Israel Pichardo-Casas ◽  
Jorden Rabasco ◽  
Felipe Escobedo ◽  
...  

SummaryNaturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open reading frames (smORFs). Here, we describe two previously uncharacterized peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. We provide evidence that Sloth1/2 are highly expressed in neurons, localize to mitochondria, and form a complex. Double mutant analysis in animals and cell culture revealed that sloth1 and sloth2 are not functionally redundant, and their loss causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


2011 ◽  
Vol 12 (11) ◽  
pp. R118 ◽  
Author(s):  
Emmanuel Ladoukakis ◽  
Vini Pereira ◽  
Emile G Magny ◽  
Adam Eyre-Walker ◽  
Juan Couso

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Kazuyoshi Kitazaki ◽  
Tomohiko Kubo

The angiosperm mitochondrial genome is the largest and least gene-dense among the eukaryotes, because its intergenic regions are expanded. There seems to be no functional constraint on the size of the intergenic regions; angiosperms maintain the large mitochondrial genome size by a currently unknown mechanism. After a brief description of the angiosperm mitochondrial genome, this review focuses on our current knowledge of the mechanisms that control the maintenance and alteration of the genome. In both processes, the control of homologous recombination is crucial in terms of site and frequency. The copy numbers of various types of mitochondrial DNA molecules may also be controlled, especially during transmission of the mitochondrial genome from one generation to the next. An important characteristic of angiosperm mitochondria is that they contain polypeptides that are translated from open reading frames created as byproducts of genome alteration and that are generally nonfunctional. Such polypeptides have potential to evolve into functional ones responsible for mitochondrially encoded traits such as cytoplasmic male sterility or may be remnants of the former functional polypeptides.


Sign in / Sign up

Export Citation Format

Share Document