scholarly journals Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner

2015 ◽  
Vol 43 (3) ◽  
pp. 1562-1576 ◽  
Author(s):  
Isao Ebina ◽  
Mariko Takemoto-Tsutsumi ◽  
Shun Watanabe ◽  
Hiroaki Koyama ◽  
Yayoi Endo ◽  
...  
Author(s):  
Barry Causier ◽  
Tayah Hopes ◽  
Mary McKay ◽  
Zachary Paling ◽  
Brendan Davies

The regulation of protein synthesis plays a key role in growth and development in all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic mRNA transcripts and typically inhibit translation of downstream ORFs, in part by stalling ribosomes. Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which conditionally regulate translation. Here we identify three Arabidopsis CPuORFs that specifically regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat shock and water limitation. Mechanistically, we provide evidence that CPuORF translation causes ribosome stalling, in a peptide sequence-dependent manner, attenuating translation of downstream ORFs. We propose a model in which plant CPuORFs are not simply on/off switches for translation, but rather act conditionally, along a continuum, to fine-tune translation dynamically.


1988 ◽  
Vol 8 (12) ◽  
pp. 5439-5447
Author(s):  
P P Mueller ◽  
B M Jackson ◽  
P F Miller ◽  
A G Hinnebusch

The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Bohlen ◽  
Liza Harbrecht ◽  
Saioa Blanco ◽  
Katharina Clemm von Hohenberg ◽  
Kai Fenzl ◽  
...  

Abstract Translation efficiency varies considerably between different mRNAs, thereby impacting protein expression. Translation of the stress response master-regulator ATF4 increases upon stress, but the molecular mechanisms are not well understood. We discover here that translation factors DENR, MCTS1 and eIF2D are required to induce ATF4 translation upon stress by promoting translation reinitiation in the ATF4 5′UTR. We find DENR and MCTS1 are only needed for reinitiation after upstream Open Reading Frames (uORFs) containing certain penultimate codons, perhaps because DENR•MCTS1 are needed to evict only certain tRNAs from post-termination 40S ribosomes. This provides a model for how DENR and MCTS1 promote translation reinitiation. Cancer cells, which are exposed to many stresses, require ATF4 for survival and proliferation. We find a strong correlation between DENR•MCTS1 expression and ATF4 activity across cancers. Furthermore, additional oncogenes including a-Raf, c-Raf and Cdk4 have long uORFs and are translated in a DENR•MCTS1 dependent manner.


2016 ◽  
Vol 15 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Qiwen Hu ◽  
Catharina Merchante ◽  
Anna N. Stepanova ◽  
Jose M. Alonso ◽  
Steffen Heber

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hiro Takahashi ◽  
Shido Miyaki ◽  
Hitoshi Onouchi ◽  
Taichiro Motomura ◽  
Nobuo Idesako ◽  
...  

Abstract Upstream open reading frames (uORFs) are present in the 5′-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1517 (1373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.


2019 ◽  
Author(s):  
Hiro Takahashi ◽  
Shido Miyaki ◽  
Hitoshi Onouchi ◽  
Taichiro Motomura ◽  
Nobuo Idesako ◽  
...  

AbstractUpstream open reading frames (uORFs) are present in the 5’-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1,517 (1,373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.


1988 ◽  
Vol 8 (12) ◽  
pp. 5439-5447 ◽  
Author(s):  
P P Mueller ◽  
B M Jackson ◽  
P F Miller ◽  
A G Hinnebusch

The third and fourth AUG codons in GCN4 mRNA efficiently repress translation of the GCN4-coding sequences under normal growth conditions. The first AUG codon is approximately 30-fold less inhibitory and is required under amino acid starvation conditions to override the repressing effects of AUG codons 3 and 4. lacZ fusions constructed to functional, elongated versions of the first and fourth upstream open reading frames (URFs) were used to show that AUG codons 1 and 4 function similarly as efficient translational start sites in vivo, raising the possibility that steps following initiation distinguish the regulatory properties of URFs 1 and 4. In accord with this idea, we observed different consequences of changing the length and termination site of URF1 versus changing those of URFs 3 and 4. The latter were lengthened considerably, with little or no effect on regulation. In fact, the function of URFs 3 and 4 was partially reconstituted with a completely heterologous URF. By contrast, certain mutations that lengthen URF1 impaired its positive regulatory function nearly as much as removing its AUG codon did. The same mutations also made URF1 a much more inhibitory element when it was present alone in the mRNA leader. These results strongly suggest that URFs 1 and 4 both function in regulation as translated coding sequences. To account for the phenotypes of the URF1 mutations, we suggest the most ribosomes normally translate URF1 and that the mutations reduce the number of ribosomes that are able to complete URF1 translation and resume scanning downstream. This effect would impair URF1 positive regulatory function if ribosomes must first translate URF1 in order to overcome the strong translational block at the 3'-proximal URFs. Because URF1-lacZ fusions were translated at the same rate under repressing and derepressing conditions, it appears that modulating initiation at URF1 is not the means that is used to restrict the regulatory consequences of URF1 translation to starvation conditions.


2017 ◽  
Vol 45 (15) ◽  
pp. 8844-8858 ◽  
Author(s):  
Noriya Hayashi ◽  
Shun Sasaki ◽  
Hiro Takahashi ◽  
Yui Yamashita ◽  
Satoshi Naito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document