Faculty Opinions recommendation of Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden.

Author(s):  
Jason Gotlib ◽  
Stephen Oh
Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2199-2204 ◽  
Author(s):  
Ola Landgren ◽  
Lynn R. Goldin ◽  
Sigurdur Y. Kristinsson ◽  
Elin A. Helgadottir ◽  
Jan Samuelsson ◽  
...  

Abstract Previous small studies have reported familial clustering of myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). We identified 6217 PV, 2838 ET, 1172 MF, and 812 MPN unclassifiable (NOS) patients diagnosed in Sweden, 43 550 controls, and first-degree relatives of cases (n = 24 577) and controls (n = 99 542). Using a marginal survival model, we calculated relative risks (RRs) and 95% confidence intervals as measures of familial aggregation. Relatives of MPN patients had significantly increased risks of PV (RR = 5.7; 3.5-9.1), ET (RR = 7.4; 3.7-14.8), and MPN NOS (RR = 7.5; 2.7-20.8). Analyses stratified by type of first-degree relative revealed consistently higher risks for siblings, compatible with a model of recessive genetic inheritance, which can be confirmed only by identifying the susceptibility gene(s). Mean age at MPN diagnosis was not different (P = .20) for affected relatives of cases (57.5 years) versus controls (60.6 years), and risk of MPN by age was not different for parents versus offspring of MPN cases (P = .10), providing no support for anticipation. Relatives of MPN patients had a borderline increased risk of chronic myeloid leukemia (CML; RR = 1.9; 0.9-3.8; P = .09). Our findings of 5- to 7-fold elevated risk of MPNs among first-degree relatives of MPN patients support the hypothesis that common, strong, shared susceptibility genes predispose to PV, ET, MF, and possibly CML.


2019 ◽  
Vol 3 (11) ◽  
pp. 1729-1737 ◽  
Author(s):  
Alessandra Carobbio ◽  
Alberto Ferrari ◽  
Arianna Masciulli ◽  
Arianna Ghirardi ◽  
Giovanni Barosi ◽  
...  

Abstract In the last years, a growing amount of evidence has been produced regarding the role of leukocytosis as a risk factor for thrombosis in patients with myeloproliferative neoplasms, predominantly in polycythemia vera (PV) and essential thrombocythemia (ET). Results from epidemiologic studies on this issue, however, are inconclusive. We conducted a systematic review and meta-analysis of articles published in the last 12 years addressing the issue, according to a predefined protocol. Forty-one articles analyzing >30 000 patients met our inclusion criteria and were deemed of acceptable methodologic quality. In addition to data on thrombosis, data were collected on bleeding, hematologic evolution, secondary cancer, and death. The relative risk (RR) of thrombosis in the presence of leukocytosis was 1.59 (95% CI, 1.40-1.80), mainly accounted for by ET (RR, 1.65; 95% CI, 1.43-1.91) and arterial thrombosis (RR, 1.45; 95% CI, 1.13-1.86) subgroups; the effect was not significant in venous thrombosis alone. Sensitivity analyses considering recurrent events as well as white blood cell estimates adjusted or unadjusted for confounding factors confirmed the primary results. In addition, the pooled RR of studies that tested white blood cell counts in time-dependent models suggested a causative effect of leukocytes in the mechanism that triggers thrombosis. The effect of leukocytosis on bleeding (RR, 1.87; 95% CI, 1.26-2.77) and death (RR, 1.89; 95% CI, 1.59-2.23) was confirmed, whereas conclusions on hematologic evolutions and solid tumors were uncertain. To confirm the accuracy of these results, an investigation on individual patient data in a large collective archive of homogeneous patients is warranted.


Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 571-581 ◽  
Author(s):  
Anna Falanga ◽  
Marina Marchetti

Abstract Thrombosis is a leading cause of morbidity and mortality in patients with Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs), particularly polycythemia vera and essential thrombocythemia. Mechanisms involved in the pathogenesis of the acquired thrombophilic state associated with these diseases include abnormalities of MPN clone–derived blood cells, which display prothrombotic features, and abnormalities of normal vascular cells, which become procoagulant in response to inflammatory stimuli. Ultimately, the release into the blood of elevated levels of procoagulant microparticles by platelets and vascular cells and the increase in the global thrombin generation due to an acquired activated protein C resistance result in a highly prothrombotic scenario in patients with polycythemia vera and essential thrombocythemia. The acquired point mutation in the pseudokinase domain of JAK2 (JAK2V617F) in these disorders is variably associated with thrombosis and, more consistently, with elevations in WBC counts and alterations in biomarkers of blood-clotting abnormalities. The predictive value of these biomarkers for thrombosis remains to be established to identify subsets of patients at elevated risk who may benefit from prophylaxis with antithrombotic drugs.


Hematology ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 480-488 ◽  
Author(s):  
Alessandro M. Vannucchi ◽  
Paola Guglielmelli

Abstract Polycythemia vera (PV) and essential thrombocythemia (ET) are chronic myeloproliferative neoplasms that are characterized by thrombohemorrhagic complications, symptom burden, and impaired survival mainly due to thrombosis, progression to myelofibrosis, and transformation to acute leukemia. In this manuscript, we will review the most recent changes in diagnostic criteria, the improvements in risk stratification, and the “state of the art” in the daily management of these disorders. The role of conventional therapies and novel agents, interferon α and the JAK2 inhibitor ruxolitinib, is critically discussed based on the results of a few basic randomized clinical studies. Several unmet needs remain, above all, the lack of a curative approach that might overcome the still burdensome morbidity and mortality of these hematologic neoplasms, as well as the toxicities associated with therapeutic agents.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Vincenzo Accurso ◽  
Marco Santoro ◽  
Simona Raso ◽  
Angelo Davide Contrino ◽  
Paolo Casimiro ◽  
...  

Splenomegaly is one of the major clinical manifestations of primary myelofibrosis and is common also in other chronic Philadelphia-negative myeloproliferative neoplasms, causing symptoms and signs and affecting quality of life of patients diagnosed with these diseases. We aimed to study the impact that such alteration has on thrombotic risk and on the survival of patients with essential thrombocythemia and patients with Polycythemia Vera (PV). We studied the relationship between splenomegaly (and its grade), thrombosis and survival in 238 patients with et and 165 patients with PV followed at our center between January 1997 and May 2019.


Thrombosis ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Jonathan S. Bleeker ◽  
William J. Hogan

Thrombocytosis is a commonly encountered clinical scenario, with a large proportion of cases discovered incidentally. The differential diagnosis for thrombocytosis is broad and the diagnostic process can be challenging. Thrombocytosis can be spurious, attributed to a reactive process or due to clonal disorder. This distinction is important as it carries implications for evaluation, prognosis, and treatment. Clonal thrombocytosis associated with the myeloproliferative neoplasms, especially essential thrombocythemia and polycythemia vera, carries a unique prognostic profile, with a markedly increased risk of thrombosis. This risk is the driving factor behind treatment strategies in these disorders. Clinical trials utilizing targeted therapies in thrombocytosis are ongoing with new therapeutic targets waiting to be explored. This paper will outline the mechanisms underlying thrombocytosis, the diagnostic evaluation of thrombocytosis, complications of thrombocytosis with a special focus on thrombotic risk as well as treatment options for clonal processes leading to thrombocytosis, including essential thrombocythemia and polycythemia vera.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4687-4687
Author(s):  
Yue Xu ◽  
Changxin Yin ◽  
Han He ◽  
Lingling Shu ◽  
Fuqun Wu ◽  
...  

Abstract Abstract 4687 JAK2 mutation is commonly found in Philadelphia-negative myeloproliferative neoplasms (MPNs). In Western countries, this mutation is found in approximately 96 percent of people with polycythemia vera, half of individuals with essential thrombocythemia or primary myelofibrosis. We used the method of amplification refractory mutation PCR (ARMS-PCR) to investigate MPN patients in China. We focused our study on patients with essential thrombocythemia (ET). ARMS-PCR was used to detect JAK2 V617F mutation in the bone barrow (BM) or peripheral blood of 37 MPN patients, which consisting of 7 ET, 5 polycythemia vera (PV), 5 chronic myeloid leukemia (CML), 5 chronic idiopathic myelofibrosis (CIMF), as well as 15 suspected MPNs. 17 cases of JAK2 V617F mutation (45.9%) were found in 37 patients, including 4 ET (57.1%), 4 PV (80.0%), 3 CIMF (60.0%), 6 suspected MPNs (40.0%). We did not find JAK2 V617F in the patients with CML. Our results indicated that the frequency of JAK2 V617F mutation in bcr/abl-negative MPNs in Chinese is similar to that in MPN patients in Western countries. At the same time, ARMS-PCR can distinguish the mutation is heterozygous or homozygous. Most patients were heterozygous for JAK2 but only a few were homozygous. In conclusion, our study showed that JAK2 V617F mutation frequency in Chinese MPN patients is similar to that in patients with this disorder in the West. It is the major molecular genetic abnormality in bcr-abl negative MPN and it can be used for diagnosis of MPN in China. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2843-2843
Author(s):  
Katherine King ◽  
Sabina Swierczek ◽  
Katie Matatall ◽  
Kimberly Hickman ◽  
Margaret A. Goodell ◽  
...  

Abstract The myeloproliferative neoplasms, polycythemia vera (PV) and essential thrombocythemia (ET), are characterized by clonal hematopoiesis that is often associated with a JAK2V617F mutation, although this does not appear to be a disease-initiating event. Treatment of PV and ET with pegylated interferon-alpha (pegInfα) has been shown to lead to hematological remission, a decrease in the JAK2V617F allelic burden in many cases, and even a reversion to polyclonal hematopoiesis. Despite promising therapeutic results, the mechanism of pegInfα-induced remission remains elusive. There are several potential mechanisms through which pegInfα may be acting, which include stimulating the immune system in order to more effectively suppress the aberrant PV clones, enhancing the activation of normal hematopoietic stem cells (HSCs), or by selectively suppressing the mutant clones. It has been previously reported that PV patients on pegInfα have an increased number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the peripheral blood as compared to untreated or hydroxyurea treated patients (Riley Blood, 2011), which suggests that PegIFNa maybe altering immunity against the mutated clone. However, we have found that interferon treatment leads to increased proliferation of HSCs and myeloid-specific differentiation in mice (Baldridge Nature, 2010). If this finding is also true in humans, it suggests the return to polyclonality after pegInfα could also involve an increase in normal HSC proliferation. In order to address this question, we are studying the effects of pegInfα treatment on the Tregs and HSCs of PV and EV patients, when compared to hydroxyurea or untreated patients. Previously we showed that pegInfα treatment reduced the JAK2V617F allelic burden in 17 out of 32 patients. Of the 13 female patients for which clonality could be assessed, one developed polyclonal hematopoiesis with three-fold reduction of JAK2V617F allelic burden, but one developed polyclonal hematopoiesis during therapy despite no reduction in the JAK2V617F allelic burden, suggesting that pegInfα treatment is able to affect both pre-JAK2V617F clones and JAK2V617F-positive PV clones. We have now assessed changes in the HSC population in response to pegInfα treatment. Upon analysis of bone marrow samples from these same pegInfα or hydroxyurea treated patients, we found that the number of HSCs (CD45+CD34+CD38-) was increased in patients treated with pegInfα. Further we saw a decrease in the percent of quiescent HSCs in the pegInfα treated samples, measured by the percentage of cells in G0, suggesting a more actively proliferating HSC population. In agreement with these data, our RNA analysis of the HSCs showed an increase in the expression of cell cycle genes in response to short-term pegInfα treatment. In addition to this apparent increase in HSC proliferation, we also saw an increase in the number of colonies formed in methocult media from the bone marrow samples of the pegInfα treated patients, suggesting an increase in myeloid specific differentiation. When we analyzed the RNA of patients who had received long-term pegInfα treatment, we saw a transcriptional profile that was indicative of cell death. Taken together, these data suggest a model in which pegInfα treatment is allowing for a return to polyclonal hematopoiesis by inducing cell division and differentiation of normal HSCs, while suppressing the pre-JAK2V617F or JAK2V617F-positive PV and ET clones, possibly by promoting apoptosis or inducing an immune-mediated cell death. Our findings do not exclude other potential mechanisms for salutary effects of pegInfα for treatment of PV and ET (see accompanying abstract by Swierczek et al). Disclosures: Swierczek: University of Utah: No financial compensation , No financial compensation Patents & Royalties.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sohaila Eldeweny ◽  
Hosny Ibrahim ◽  
Ghada Elsayed ◽  
Mohamed Samra

Abstract Background Myeloproliferative neoplasms (MPNs) describe a group of diseases involving the bone marrow (BM). Classical MPNs are classified into chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). This classification is based on the presence of Philadelphia (Ph) chromosome (BCR/ABL1). CML is BCR/ABL1-positive while PV, ET, and PMF are negative. JAK2 p. Val617Phe pathological variant is the most associated mutation in BCR/ABL1-negative MPNs. The frequency of JAK2 p. Val617Phe is 90–95% in PV patients, 50–60% in ET, and 40–50% in patients with PMF. Studies on MPL gene led to the revelation of a gain of function pathological variants in JAK2 p. Val617Phe-negative myeloproliferative neoplasms (MPNs). MPL p. W515 L/K pathological variants are the most common across all mutations in MPL gene. The prevalence of these pathological variants over the Egyptian population is not clear enough. In the present study, we aimed to investigate the prevalence of MPL p. W515 L/K pathological variants in the Philadelphia (Ph)-negative MPNs over the Egyptian population. Results We have tested 60 patients with Ph-negative MPNs for MPL p. W515 L/K pathological variants. Median age was 51 (22–73) years. No MPL p. W515 L/K pathological variants were detected among our patients. JAK2 p. Val617Phe in PV and PMF patients showed significantly lower frequency than other studies. Splenomegaly was significantly higher in ET patients compared to other studies. Conclusion MPL p. W515 L/K pathological variants are rare across the Egyptian Ph-negative MPNs, and further studies on a large number are recommended. MPN patients in Egypt are younger compared to different ethnic groups.


Sign in / Sign up

Export Citation Format

Share Document