Faculty Opinions recommendation of Reductions in portion size and energy density of foods are additive and lead to sustained decreases in energy intake.

Author(s):  
Bruce Bistrian
2004 ◽  
Vol 79 (6) ◽  
pp. 962-968 ◽  
Author(s):  
Tanja VE Kral ◽  
Liane S Roe ◽  
Barbara J Rolls

2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Kathleen Erin Leahy ◽  
Leann L. Birch ◽  
Jennifer O. Fisher ◽  
Barbara J. Rolls

2009 ◽  
Vol 69 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Barbara J. Rolls

Obesity is a rapidly-growing public health problem that is related in part to the foods available in the eating environment. Properties of foods such as portion size and energy density (kJ/g) have robust effects on energy intake; large portions of energy-dense foods promote excess consumption and this effect starts in early childhood. Studies show, however, that in both adults and children these food characteristics can also be used strategically to moderate energy intake, as well as to improve diet quality. Dietary energy density can be reduced by increasing intake of water-rich foods such as vegetables and fruits. Their high water content allows individuals to eat satisfying portions of food while decreasing energy intake. Filling up at the start of a meal with vegetables or fruit and increasing the proportion of vegetables in a main course have been found to control hunger and moderate energy intake. Data from several clinical trials have also demonstrated that reducing dietary energy density by the addition of water-rich foods is associated with substantial weight loss even though participants eat greater amounts of food. Population-based assessments indicate that beginning in childhood there is a relationship between consuming large portions of energy-dense foods and obesity. These data suggest that the promotion of diets that are reduced in energy density should be an important component of future efforts to both prevent and treat obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
James P. Goode ◽  
Kylie J. Smith ◽  
Michelle Kilpatrick ◽  
Monique Breslin ◽  
Wendy H. Oddy ◽  
...  

Qualitative food frequency questionnaires (Q-FFQ) omit portion size information from dietary assessment. This restricts researchers to consumption frequency data, limiting investigations of dietary composition (i.e., energy-adjusted intakes) and misreporting. To support such researchers, we provide an instructive example of Q-FFQ energy intake estimation that derives typical portion size information from a reference survey population and evaluates misreporting. A sample of 1,919 Childhood Determinants of Adult Health Study (CDAH) participants aged 26–36 years completed a 127-item Q-FFQ. We assumed sex-specific portion sizes for Q-FFQ items using 24-h dietary recall data from the 2011–2012 Australian National Nutrition and Physical Activity Survey (NNPAS) and compiled energy density values primarily using the Australian Food Composition Database. Total energy intake estimation was daily equivalent frequency × portion size (g) × energy density (kJ/g) for each Q-FFQ item, summed. We benchmarked energy intake estimates against a weighted sample of age-matched NNPAS respondents (n = 1,383). Median (interquartile range) energy intake was 9,400 (7,580–11,969) kJ/day in CDAH and 9,055 (6,916–11,825) kJ/day in weighted NNPAS. Median energy intake to basal metabolic rate ratios were 1.43 (1.15–1.78) in CDAH and 1.35 (1.03–1.74) in weighted NNPAS, indicating notable underreporting in both samples, with increased levels of underreporting among the overweight and obese. Using the Goldberg and predicted total energy expenditure methods for classifying misreporting, 65 and 41% of CDAH participants had acceptable/plausible energy intake estimates, respectively. Excluding suspected CDAH misreporters improved the plausibility of energy intake estimates, concordant with expected body weight associations. This process can assist researchers wanting an estimate of energy intake from a Q-FFQ and to evaluate misreporting, broadening the scope of diet–disease investigations that depend on consumption frequency data.


2014 ◽  
Vol 73 (3) ◽  
pp. 397-406 ◽  
Author(s):  
L. Kirsty Pourshahidi ◽  
Maeve A. Kerr ◽  
Tracy A. McCaffrey ◽  
M. Barbara E. Livingstone

Childhood obesity is of concern worldwide. The portion size (PS) and energy density (ED) of food are two major determinants of children's energy intake (EI). Trends towards increasing PS are most apparent and best documented in the USA, where PS of numerous food products have increased in the marketplace over the past three decades, particularly high-energy dense foods. Analyses of population-level dietary surveys have confirmed this trend in children for both in- and out-of-home eating, and a plethora of observational evidence positively associates PS, ED and adiposity in children. A limited number of intervention studies provide clear evidence that children, even as young as 2 years, respond acutely to increasing PS, with some studies also demonstrating the additive effects of increased ED in promoting excessive EI. However, most of the evidence is based on children aged 3–6 years and there is a paucity of data in older children and adolescents. It is unclear whether decreasing PS can have the opposite effect on children's EI but recent acute studies have demonstrated that the incorporation of lower energy dense foods, such as fruit and vegetables, into children's meals down-regulates EI. Although a direct causal link between PS and obesity remains to be established, the regular consumption of larger PS of energy dense foods do favour obesity-promoting eating behaviours in children. Further research is required to establish the most feasible and effective interventions and policies to counteract the deleterious impact of PS and ED on children's EI.


Sign in / Sign up

Export Citation Format

Share Document