Faculty Opinions recommendation of TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought.

Author(s):  
Xing Wang Deng ◽  
Yeqin M Kong
2009 ◽  
Vol 28 (23) ◽  
pp. 3745-3757 ◽  
Author(s):  
Tommaso Legnaioli ◽  
Juan Cuevas ◽  
Paloma Mas

2019 ◽  
Author(s):  
He Huang ◽  
Katrice E. McLoughlin ◽  
Maria L. Sorkin ◽  
E. Sethe Burgie ◽  
Rebecca K. Bindbeutel ◽  
...  

AbstractThe phytochrome (phy) family of bilin-containing photoreceptors are major regulators of plant photomorphogenesis through their unique ability to photointerconvert between a biologically inactive red light-absorbing Pr state and an active far-red light­absorbing Pfr state. While the initial steps in Pfr signaling are unclear, an early event for the phyB isoform after photoconversion is its redistribution from the cytoplasm into subnuclear foci named photobodies (PBs) that dissipate after Pfr reverts back to Pr by far-red irradiation or by temperature-dependent non-photochemical reversion. Here we present evidence that PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) functions both as an essential structural component of phyB-containing PBs and as a direct regulator of thermal reversion that is sufficient to stabilize phyB as Pfr in vitro. By examining the genetic interaction between a constitutively active phyBY276H-YFP allele (YHB-YFP) and PCH1, we show that the loss of PCH1 prevents YHB from coalescing into PBs without affecting its nuclear localization, whereas overexpression of PCH1 dramatically increases PB levels. Loss of PCH1, presumably by impacting phyB-PB assembly, compromises a number of events elicited in YHB-YFP plants, including their constitutive photomorphogenic phenotype, red light-regulated thermomorphogenesis, and input of phyB into the circadian clock. Conversely, elevated levels of both phyB and PCH1 generate stable, yet far red-light reversible PBs that persisted for days. Collectively, our data demonstrate that the assembly of PCHl-containing PBs is critical for phyB signaling to multiple outputs, and suggest that altering PB dynamics could be exploited to modulate plant responses to light and temperature.SignificanceIn Arabidopsis, phytochrome B (phyB) perceives light and temperature signals to regulate various fundamental morphogenic processes in plants through its interconversion between its active Pfr and inactive Pr states. Upon photoconversion from Pr to Pfr, phyB forms subnuclear foci called photobodies, whose composition and molecular function(s) are unclear. We show here that the phyB-interacting protein PCH1 is a structural component of phyB-photobodies and protects Pfr from thermal reversion back to Pr thus helping maintain phyB signaling. Loss of PCH1 compromises photobody formation, which disrupts a number of downstream events including photo- and thermal perception and signaling into the circadian clock. These results demonstrate that forming PCHl-dependent phyB-photobodies is an essential step connecting light and temperature to controls on plant morphogenesis.


2017 ◽  
Author(s):  
He Huang ◽  
Malia A. Gehan ◽  
Sarah E. Huss ◽  
Sophie Alvarez ◽  
Cesar Lizarraga ◽  
...  

ABSTRACTPlant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana and crop species, circadian clock factors have been identified as critical for growth, flowering and circadian rhythms. Outside of A. thaliana, however, little is known about the molecular function of clock genes. Therefore, we sought to compare the function of Brachypodium distachyon and Seteria viridis orthologs of EARLY FLOWERING3, a key clock gene in A. thaliana. To identify both cycling genes and putative ELF3 functional orthologs in S. viridis, a circadian RNA-seq dataset and online query tool (Diel Explorer) was generated as a community resource to explore expression profiles of Setaria genes under constant conditions after photo- or thermo-entrainment. The function of ELF3 orthologs from A. thaliana, B. distachyon, and S. viridis were tested for complementation of an elf3 mutation in A. thaliana. Despite comparably low sequence identity versus AtELF3 (less than 37%), both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time and arrhythmic clock phenotypes. Molecular analysis using affinity purification and mass spectrometry to compare physical interactions also found that BdELF3 and SvELF3 could be integrated into similar complexes and networks as AtELF3, including forming a composite evening complex. Thus, we find that, despite 180 million years of separation, BdELF3 and SvELF3 can functionally complement loss of ELF3 at the molecular and physiological level.One Sentence SummaryOrthologs of a key circadian clock component ELF3 from grasses functionally complement the Arabidopsis counterpart at the molecular and physiological level, in spite of high sequence divergence.


Pneumologie ◽  
2018 ◽  
Vol 72 (S 01) ◽  
pp. S10-S11
Author(s):  
M Felten ◽  
LG Teixeira Alves ◽  
C Chaput ◽  
E Letsiou ◽  
N Suttorp ◽  
...  

2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2013 ◽  
pp. 1-1
Author(s):  
Benjamin D Weger ◽  
Meltem Weger ◽  
Nicolas Diotel ◽  
Michael Nusser ◽  
Sepand Rastegar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document