Faculty Opinions recommendation of The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs.

Author(s):  
Donna Fekete
2021 ◽  
Author(s):  
Amanda S Janesick ◽  
Mirko Scheibinger ◽  
Nesrine Benkafadar ◽  
Sakin Kirti ◽  
Stefan Heller

The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from complete deafness within weeks. The mechanisms that trigger, sustain, and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing. The most prominent changes in gene expression were linked to the upregulation of interferon response genes which occurred in supporting cells, confirmed by single-cell RNA-sequencing and in situ hybridization. We determined that the JAK/STAT signaling pathway is essential for the interferon gene response in supporting cells, set in motion by hair cell loss. Four days after ototoxic damage, we identified newly regenerated, nascent auditory hair cells that express genes linked to termination of the interferon response. These cells are incipient modified neurons that represent a population of hair cells en route towards obtaining their location-specific and fully functional cell identity. The robust, transient expression of immune-related genes in supporting cells suggests a potential functional involvement of JAK/STAT signaling and interferon in sensory hair cell regeneration.


Science ◽  
1988 ◽  
Vol 240 (4860) ◽  
pp. 1772-1774 ◽  
Author(s):  
JT Corwin ◽  
DA Cotanche

Any loss of cochlear hair cells has been presumed to result in a permanent hearing deficit because the production of these cells normally ceases before birth. However, after acoustic trauma, injured sensory cells in the mature cochlea of the chicken are replaced. New cells appear to be produced by mitosis of supporting cells that survive at the lesion site and do not divide in the absence of trauma. This trauma-induced division of normally postmitotic cells may lead to recovery from profound hearing loss.


2010 ◽  
Vol 30 (37) ◽  
pp. 12545-12556 ◽  
Author(s):  
J. E. Bird ◽  
N. Daudet ◽  
M. E. Warchol ◽  
J. E. Gale

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Qiuxiang Zhang ◽  
Suna Li ◽  
Hiu-Tung C. Wong ◽  
Xinyi J. He ◽  
Alisha Beirl ◽  
...  

Cell Calcium ◽  
2012 ◽  
Vol 52 (3-4) ◽  
pp. 327-337 ◽  
Author(s):  
Mark A. Rutherford ◽  
Tina Pangršič

2002 ◽  
Vol 329 (2) ◽  
pp. 133-136 ◽  
Author(s):  
F Abbate ◽  
S Catania ◽  
A Germanà ◽  
T González ◽  
B Diaz-Esnal ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ruishuang Geng ◽  
David N Furness ◽  
Chithra K Muraleedharan ◽  
Jinsheng Zhang ◽  
Alain Dabdoub ◽  
...  

2008 ◽  
Vol 18 (4) ◽  
pp. 542-549
Author(s):  
Jeong-Han Lee ◽  
Chan-Ny Park ◽  
Rae-Kil Park

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e60866 ◽  
Author(s):  
Rachel Clemens Grisham ◽  
Katie Kindt ◽  
Karin Finger-Baier ◽  
Bettina Schmid ◽  
Teresa Nicolson

Sign in / Sign up

Export Citation Format

Share Document