Faculty Opinions recommendation of Snail1 controls epithelial-mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells.

Author(s):  
Reinhard Fässler ◽  
Zhiqi Sun
2011 ◽  
Vol 195 (5) ◽  
pp. 729-738 ◽  
Author(s):  
Xiao-Yan Li ◽  
Xiaoming Zhou ◽  
R. Grant Rowe ◽  
Yuexian Hu ◽  
David D. Schlaepfer ◽  
...  

Mouse embryonic cells isolated from focal adhesion kinase (FAK)–null animals at embryonic day 7.5 display multiple defects in focal adhesion remodeling, microtubule dynamics, mechanotransduction, proliferation, directional motility, and invasion. To date, the ability of FAK to modulate cell function has been ascribed largely to its control of posttranscriptional signaling cascades in this embryonic cell population. In this paper, we demonstrate that FAK unexpectedly exerts control over an epithelial–mesenchymal transition (EMT) program that commits embryonic FAK-null cells to an epithelial status highlighted by the expression of E-cadherin, desmoplakin, and cytokeratins. FAK rescue reestablished the mesenchymal characteristics of FAK-null embryonic cells to generate committed mouse embryonic fibroblasts via an extracellular signal–related kinase– and Akt-dependent signaling cascade that triggered Snail1 gene expression and Snail1 protein stabilization. These findings indentify FAK as a novel regulator of Snail1-dependent EMT in embryonic cells and suggest that multiple defects in FAK−/− cell behavior can be attributed to an inappropriate commitment of these cells to an epithelial, rather than fibroblastic, phenotype.


2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


Sign in / Sign up

Export Citation Format

Share Document