protein stabilization
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 129)

H-INDEX

60
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Laura Robrahn ◽  
Aline Dupont ◽  
Sandra Jumpertz ◽  
Kaiyi Zhang ◽  
Christian H. Holland ◽  
...  

The hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and to ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of HIF-1 after oral infection of mice with Salmonella Typhimurium. Immunohistochemistry and western blot analysis confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a -deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced non-canonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact on inflammatory gene expression, bacterial spread or disease outcome. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro , HIF-1α-deficient macrophages showed an overall impaired transcription of mRNA encoding pro-inflammatory factors, however, intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianbing Hou ◽  
Minghao Xu ◽  
Hongyu Gu ◽  
Dakun Pei ◽  
Yudong Liu ◽  
...  

AbstractZinc finger CCCH-type containing 15 (ZC3H15), a highly conserved protein involved in several cellular processes, which was responsible for tumorigenesis and may be a promising marker in myeloid leukemia (AML) and hepatocellular carcinoma (HCC). However, little is known about the biological significance and molecular mechanisms of ZC3H15 in GBM. In this study, we revealed that ZC3H15 was overexpressed in GBM and high ZC3H15 expression was associated with poor survival of patients with GBM. We found that ZC3H15 promoted the proliferation, migration, invasion, and tumorigenesis of GBM cells by activating the EGFR signaling pathway. We also revealed that ZC3H15 reduced EGFR ubiquitination, which was responsible for EGFR protein stabilization. In addition, we demonstrated that ZC3H15 inhibited the transcription of CBL, which was an E3 ubiquitin ligase for EGFR proteasomal degradation. And silencing of CBL could partly abrogate the inhibitory effects on cell proliferation, migration, and invasion of GBM cells induced by ZC3H15 knockdown. Thus, our research revealed the important roles of ZC3H15 in GBM development and provided a brand-new insight for improving the treatment of GBMs.


Author(s):  
Norihisa Bizen ◽  
Asim K. Bepari ◽  
Li Zhou ◽  
Manabu Abe ◽  
Kenji Sakimura ◽  
...  

AbstractOlig2 is indispensable for motoneuron and oligodendrocyte fate-specification in the pMN domain of embryonic spinal cords, and also involved in the proliferation and differentiation of several cell types in the nervous system, including neural progenitor cells (NPCs) and oligodendrocytes. However, how Olig2 controls these diverse biological processes remains unclear. Here, we demonstrated that a novel Olig2-binding protein, DEAD-box helicase 20 (Ddx20), is indispensable for the survival of NPCs and oligodendrocyte progenitor cells (OPCs). A central nervous system (CNS)-specific Ddx20 conditional knockout (cKO) demonstrated apoptosis and cell cycle arrest in NPCs and OPCs, through the potentiation of the p53 pathway in DNA damage-dependent and independent manners, including SMN complex disruption and the abnormal splicing of Mdm2 mRNA. Analyzes of Olig2 null NPCs showed that Olig2 contributed to NPC proliferation through Ddx20 protein stabilization. Our findings provide novel mechanisms underlying the Olig2-mediated proliferation of NPCs, via the Ddx20-p53 axis, in the embryonic CNS.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
László Héja ◽  
Ágnes Simon ◽  
Zsolt Szabó ◽  
Julianna Kardos

Connexin (Cx) proteins establish intercellular gap junction channels (Cx GJCs) through coupling of two apposed hexameric Cx hemichannels (Cx HCs, connexons). Pre- and post-GJ interfaces consist of extracellular EL1 and EL2 loops, each with three conserved cysteines. Previously, we reported that known peptide inhibitors, mimicking a variety of Cx43 sequences, appear non-selective when binding to homomeric Cx43 vs. Cx36 GJC homology model subtypes. In pursuit of finding potentially Cx subtype-specific inhibitors of connexon-connexon coupling, we aimed at to understand better how the GJ interface is formed. Here we report on the discovery of Cx GJC subtype-specific protein stabilization centers (SCs) featuring GJ interface architecture. First, the Cx43 GJC homology model, embedded in two opposed membrane bilayers, has been devised. Next, we endorsed the fluctuation dynamics of SCs of the interface domain of Cx43 GJC by applying standard molecular dynamics under open and closed cystine disulfide bond (CS-SC) preconditions. The simulations confirmed the major role of of the unique trans-GJ SC pattern comprising conserved (55N, 56T) and non-conserved (57Q) residues of the apposed EL1 loops in the stabilization of the GJC complex. Importantly, clusters of SC patterns residing close to the GJ interface domain appear to orient the interface formation via the numerous SCs between EL1 and EL2. These include central 54CS-S198C or 61CS-S192C contacts with residues 53R, 54C, 55N, 197D, 199F or 64V, 191P, respectively. In addition, we revealed that GJC interface formation is favoured when the psi dihedral angle of the nearby 193P residue is stable around 180° and the interface SCs disappear when this angle moves to the 0° to −45° range. The potential of the association of non-conserved residues with SC motifs in connexon-connexon coupling makes the development of Cx subtype-specific inhibitors viable.


Author(s):  
Moumita Ghosh ◽  
Anna Majkowska ◽  
Rajkumar Mirsa ◽  
Santu Bera ◽  
José Carlos Rodríguez-Cabello ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 63
Author(s):  
Junyan Xie ◽  
Lihua Wang ◽  
Huiqiong Zheng

Understanding the effects of spaceflight on plant flowering regulation is important to setup a life support system for long-term human space exploration. However, the way in which plant flowering is affected by spaceflight remains unclear. Here, we present results from our latest space experiments on the Chinese spacelab Tiangong-2, in which Arabidopsis wild-type and transgenic plants pFT::GFP germinated and grew as normally as their controls on the ground, but the floral initiation under the long-day condition in space was about 20 days later than their controls on the ground. Time-course series of digital images of pFT::GFP plants showed that the expression rhythm of FT in space did not change, but the peak appeared later in comparison with those of their controls on the ground. Whole-genome microarray analysis revealed that approximately 16% of Arabidopsis genes at the flowering stage changed their transcript levels under spaceflight conditions in comparison with their controls on the ground. The GO terms were enriched in DEGs with up-regulation of the response to temperature, wounding, and protein stabilization and down-regulation of the function in circadian rhythm, gibberellins, and mRNA processes. FT and SOC1 could act as hubs to integrate spaceflight stress signals into the photoperiodic flowering pathway in Arabidopsis in space.


2021 ◽  
Vol 9 (A) ◽  
pp. 1181-1186
Author(s):  
Yuyun Yueniwati ◽  
Mokhamad Fahmi Rizki Syaban ◽  
Icha Farihah Deniyati Faratisha ◽  
Khadijah Cahya Yunita ◽  
Dedy Budi Kurniawan ◽  
...  

Indonesia's diversity of natural resources presents an intriguing opportunity for the exploration of potential herbal medicines. Numerous compounds, both purified and crude, have been reported to exhibit antiviral activity. The ACE-2 receptor may be a therapeutic target for SARS-CoV-2 infection. We used a search engine to search for herbal medicines with ACE-2 inhibitory activity to predict the potential inhibition of natural compounds (i.e., theaflavin, deoxypodophyllotoxin, gallocatechin, allicin, quercetin, annonamine, Curcumin, 6-gingerol, and cucurbitacin B) to SARS-CoV2 – ACE-2 complex. We performed molecular docking analysis using the ACE-2 protein target from Protein Data Bank. Protein stabilization was carried out to adjust to the body's physiology, carried out using Pymol by removing water atoms and adding hydrogen atoms. Ligands of active compounds from natural resources were selected and downloaded from the PubChem database, then optimized by Pymol software. The complexes of the tested ligand compounds and ACE-2 receptors, which have a bond strength smaller than the control were selected for analysis.  Theaflavin, Deoxypodophyllotoxin, Gallocatechin, Curcumin, and Cucurbitacin B had a strong bond affinity than the control ligands. Based on our data, deoxypodophylotoxin and Curcumin had the same interaction amino acid residus compare to the control ligand. This study concludes that deoxypodophyllotoxin and Curcumin have the greatest potential to inhibit the formation of the SARS-Cov2-ACE-2 complex; additionally, these compounds exhibit favorable pharmacological and pharmacodynamic properties. It is suggested that additional research be conducted to determine the biological effects of deoxypodopyllotoxin and Curcumin on ACE-2 receptors.


2021 ◽  
Author(s):  
Long-ping Wen ◽  
Xiaowan Huang ◽  
Ziyang Cao ◽  
Tao Ding ◽  
Jieying Qian ◽  
...  

Abstract More than half of human malignant tumors harbor TP53 gene mutations, most of which are point mutations within the DNA-binding domain of TP53, resulting in mutant p53 (mutp53) protein stabilization and accumulation in the cell and enhanced tumor progression. Depletion of mutp53 through the autophagy or proteasome pathway is considered the most direct strategy to target mutp53 for tumor treatment. However, due to the lack of specific autophagy receptors and the insufficient level of autophagy in tumor cells, targeted degradation of mutp53 by nanomaterials via the autophagy pathway has not been reported. Here, we propose a type of "nanoreceptors" (denoted NRs) that mimics selective autophagy receptors and develop a new platform for targeted degradation of mutp53. The NRs specifically bind mutp53 in tumor cells via mutp53-binding peptide (MBP). In addition, the level of cell autophagy is greatly increased due to the incorporated of cationic lipid. As a result, the NRs effectively degrade mutp53 through the autophagy pathway with complete autophagic flux. The knockout of ATG5, an essential autophagy-related gene, significantly inhibited the NRs-induced degradation of mutp53, demonstrating the critical role of autophagy in this effect. Subsequently, the degradation of mutp53 by the NRs abrogated mutp53-conferred gain-of-function (GOF) phenotypes, including enhanced cell proliferation and cell migration and reduced sensitivity to cisplatin (CDDP). Last, Pt(IV)-loaded NRs (NRs/Pt, consisting of Pt(IV) prodrug encapsulated in the NRs) showed outstanding synergistic antitumor effects in an ES-2 ovarian cancer model and a patient-derived xenograft (PDX) ovarian cancer model. Collectively, our study suggests the use of NRs/Pt as a new biomimetic nanoplatform for regulating autophagy, providing new ideas for precise tumor treatments that target mutp53.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7223
Author(s):  
Marc Borie-Guichot ◽  
My Lan Tran ◽  
Yves Génisson ◽  
Stéphanie Ballereau ◽  
Cécile Dehoux

Pompe disease (PD), a lysosomal storage disease, is caused by mutations of the GAA gene, inducing deficiency in the acid alpha-glucosidase (GAA). This enzymatic impairment causes glycogen burden in lysosomes and triggers cell malfunctions, especially in cardiac, smooth and skeletal muscle cells and motor neurons. To date, the only approved treatment available for PD is enzyme replacement therapy (ERT) consisting of intravenous administration of rhGAA. The limitations of ERT have motivated the investigation of new therapies. Pharmacological chaperone (PC) therapy aims at restoring enzymatic activity through protein stabilization by ligand binding. PCs are divided into two classes: active site-specific chaperones (ASSCs) and the non-inhibitory PCs. In this review, we summarize the different pharmacological chaperones reported against PD by specifying their PC class and activity. An emphasis is placed on the recent use of these chaperones in combination with ERT.


2021 ◽  
Author(s):  
Zexiang Han ◽  
Shayna Hilburg ◽  
Alfredo Alexander-Katz

Synthetic random heteropolymers (RHPs) with high chemical heterogeneity can self-assemble into single-chain nanoparticles that exhibit features reminiscent of natural proteins, such as topological polymorphism. Using all-atom molecular dynamics simulations, this work investigates the structure and single-chain mechanical unfolding of a library of four-component RHPs in water, studying the effects of sequence, composition, configuration, and molecular weight. Results show that compactified RHPs can have highly dynamic unfolding behaviors which are dominated by complex side-chain interactions and prove markedly different from their homopolymer counterparts. For a given sequence and conformation, an RHP’s backbone topology can strongly impact its unfolding response, hinting at the importance of topological design in the nanoscale mechanics of heteropolymers. In addition, we identify enthalpically-driven reconfiguration upon unfolding, observing a solvent-shielding protection mechanism similar to protein stabilization by PEGylation. This work provides the first computational evidence for the force-induced unfolding of protein-inspired multicomponent heteropolymers.


Sign in / Sign up

Export Citation Format

Share Document