Faculty Opinions recommendation of Do conformational biases of simple helical junctions influence RNA folding stability and specificity?

Author(s):  
Kevin J Luebke
Keyword(s):  
2021 ◽  
pp. 166975
Author(s):  
Leonard Schärfen ◽  
Karla M. Neugebauer

2008 ◽  
Vol 379 (4) ◽  
pp. 859-870 ◽  
Author(s):  
Jörg C. Schlatterer ◽  
Lisa W. Kwok ◽  
Jessica S. Lamb ◽  
Hye Yoon Park ◽  
Kurt Andresen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 93 (5) ◽  
pp. 2811-2819
Author(s):  
Dong-Hwa Lee ◽  
Sohee Oh ◽  
Kyungeun Lim ◽  
Boah Lee ◽  
Gwan-Su Yi ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Svetlana Kalmykova ◽  
Marina Kalinina ◽  
Stepan Denisov ◽  
Alexey Mironov ◽  
Dmitry Skvortsov ◽  
...  

AbstractThe ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3’-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.


Biochemistry ◽  
2021 ◽  
Author(s):  
Ryota Yamagami ◽  
Jacob P. Sieg ◽  
Philip C. Bevilacqua

2019 ◽  
Vol 116 (46) ◽  
pp. 23075-23082
Author(s):  
Kathleen A. Leamy ◽  
Ryota Yamagami ◽  
Neela H. Yennawar ◽  
Philip C. Bevilacqua

RNA folding is often studied by renaturing full-length RNA in vitro and tracking folding transitions. However, the intracellular transcript folds as it emerges from the RNA polymerase. Here, we investigate the folding pathways and stability of numerous late-transcriptional intermediates of yeast and Escherichia coli transfer RNAs (tRNAs). Transfer RNA is a highly regulated functional RNA that undergoes multiple steps of posttranscriptional processing and is found in very different lengths during its lifetime in the cell. The precursor transcript is extended on both the 5′ and 3′ ends of the cloverleaf core, and these extensions get trimmed before addition of the 3′-CCA and aminoacylation. We studied the thermodynamics and structures of the precursor tRNA and of late-transcriptional intermediates of the cloverleaf structure. We examined RNA folding at both the secondary and tertiary structural levels using multiple biochemical and biophysical approaches. Our findings suggest that perhaps nature has selected for a single-base addition to control folding to the functional 3D structure. In near-cellular conditions, yeast tRNAPhe and E. coli tRNAAla transcripts fold in a single, cooperative transition only when nearly all of the nucleotides in the cloverleaf are transcribed by indirectly enhancing folding cooperativity. Furthermore, native extensions on the 5′ and 3′ ends do not interfere with cooperative core folding. This highly controlled cooperative folding has implications for recognition of tRNA by processing and modification enzymes and quality control of tRNA in cells.


Sign in / Sign up

Export Citation Format

Share Document