Faculty Opinions recommendation of Transgenic expression of intraneuronal Aβ42 but not Aβ40 leads to cellular Aβ lesions, degeneration, and functional impairment without typical Alzheimer's disease pathology.

Author(s):  
Jane Sullivan
Author(s):  
Luis Enrique Arroyo-García ◽  
Arturo G. Isla ◽  
Yuniesky Andrade-Talavera ◽  
Hugo Balleza-Tapia ◽  
Raúl Loera-Valencia ◽  
...  

AbstractIn Alzheimer’s disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.


2021 ◽  
pp. 1-13
Author(s):  
Jonathan D. Drake ◽  
Alison B. Chambers ◽  
Brian R. Ott ◽  
Lori A. Daiello ◽  

Background: Cerebrovascular dysfunction confers risk for functional decline in Alzheimer’s disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. Objective: We utilized Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. Methods: Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). Results: Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ 42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ 42 (all <  p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. Conclusion: Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.


2015 ◽  
Vol 47 (1) ◽  
pp. 205-214 ◽  
Author(s):  
Hong Liu-Seifert ◽  
Eric Siemers ◽  
Karen Price ◽  
Baoguang Han ◽  
Katherine J. Selzler ◽  
...  

2012 ◽  
Vol 29 (4) ◽  
pp. 541-548 ◽  
Author(s):  
C. M. Sanz ◽  
H. Hanaire ◽  
B. J. Vellas ◽  
A. J. Sinclair ◽  
S. Andrieu ◽  
...  

2022 ◽  
pp. 1-11
Author(s):  
Jeff Schaffert ◽  
Christian LoBue ◽  
Linda S. Hynan ◽  
John Hart ◽  
Heidi Rossetti ◽  
...  

Background: Life expectancy (LE) following Alzheimer’s disease (AD) is highly variable. The literature to date is limited by smaller sample sizes and clinical diagnoses. Objective: No study to date has evaluated predictors of AD LE in a retrospective large autopsy-confirmed sample, which was the primary objective of this study. Methods: Participants (≥50 years old) clinically and neuropathologically diagnosed with AD were evaluated using National Alzheimer’s Coordinating Center (N = 1,401) data. Analyses focused on 21 demographic, medical, neuropsychiatric, neurological, functional, and global cognitive predictors of LE at AD dementia diagnosis. These 21 predictors were evaluated in univariate analyses. Variables found to be significant were then entered into a forward multiple regression. LE was defined as months between AD diagnosis and death. Results: Fourteen predictors were significant in univariate analyses and entered into the regression. Seven predictors explained 27% of LE variance in 764 total participants. Mini-Mental State Examination (MMSE) score was the strongest predictor of LE, followed by sex, age, race/ethnicity, neuropsychiatric symptoms, abnormal neurological exam results, and functional impairment ratings. Post-hoc analyses revealed correlations of LE were strongest with MMSE ≤12. Conclusion: Global cognitive functioning was the strongest predictor of LE following diagnosis, and AD patients with severe impairment had the shortest LE. AD patients who are older, male, white, and have more motor symptoms, functional impairment, and neuropsychiatric symptoms were also more likely have shorter LE. While this model cannot provide individual prognoses, additional studies may focus on these variables to enhance predictions of LE in patients with AD.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Omar A. Halawa ◽  
◽  
Jennifer R. Gatchel ◽  
Rebecca E. Amariglio ◽  
Dorene M. Rentz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document