Faculty Opinions recommendation of Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival.

Author(s):  
Constantine Mitsiades
Cell ◽  
2010 ◽  
Vol 142 (4) ◽  
pp. 531-543 ◽  
Author(s):  
Xiaolan Zhou ◽  
Jin Lin Wang ◽  
John Lu ◽  
Yanping Song ◽  
Keith S. Kwak ◽  
...  

Author(s):  
Mengyuan Niu ◽  
Shiyu Song ◽  
Zhonglan Su ◽  
Lulu Wei ◽  
Li Li ◽  
...  

2021 ◽  
Author(s):  
Alexandra Moreira-Pais ◽  
Rita Ferreira ◽  
Paula A. Oliveira ◽  
José A. Duarte

2002 ◽  
Vol 283 (5) ◽  
pp. C1376-C1382 ◽  
Author(s):  
Gary M. Diffee ◽  
Katherine Kalfas ◽  
Sadeeka Al-Majid ◽  
Donna O. McCarthy

Cachexia is commonly seen in cancer and is characterized by severe muscle wasting, but little is known about the effect of cancer cachexia on expression of contractile protein isoforms such as myosin. Other causes of muscle atrophy shift expression of myosin isoforms toward increased fast (type II) isoform expression. We injected mice with murine C-26 adenocarcinoma cells, a tumor cell line that has been shown to cause muscle wasting. Mice were killed 21 days after tumor injection, and hindlimb muscles were removed. Myosin heavy chain (MHC) and myosin light chain (MLC) content was determined in muscle homogenates by SDS-PAGE. Body weight was significantly lower in tumor-bearing (T) mice. There was a significant decrease in muscle mass in all three muscles tested compared with control, with the largest decrease occurring in the soleus. Although no type IIb MHC was detected in the soleus samples from control mice, type IIb comprised 19% of the total MHC in T soleus. Type I MHC was significantly decreased in T vs. control soleus muscle. MHC isoform content was not significantly different from control in plantaris and gastrocnemius muscles. These data are the first to show a change in myosin isoform expression accompanying muscle atrophy during cancer cachexia.


2020 ◽  
Author(s):  
Suzan Farhang-Sardroodi ◽  
Kathleen P. Wilkie

Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass which negatively impacts patient’s quality of life, reduces their ability to sustain anticancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin-ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachexic factors. The model formulation tracks the intercellular interactions between cancer, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and analysis provides insight into tissue growth in healthy, cancerous, and post-treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that the activation and proliferation of satellite cells, after blocking the myostatin/activin B pathway, is required to partially recover cancer-induced muscle loss.


2015 ◽  
Vol 138 (8) ◽  
pp. 2021-2029 ◽  
Author(s):  
Míriam Toledo ◽  
Sílvia Busquets ◽  
Fabio Penna ◽  
Xiaolan Zhou ◽  
Enrica Marmonti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document