Faculty Opinions recommendation of Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses.

Author(s):  
Laurel Lenz
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251885
Author(s):  
Lauryn Samelko ◽  
Marco Caicedo ◽  
Kyron McAllister ◽  
Joshua Jacobs ◽  
Nadim James Hallab

It is widely recognized that innate macrophage immune reactions to implant debris are central to the inflammatory responses that drive biologic implant failure over the long term. Less common, adaptive lymphocyte immune reactions to implant debris, such as delayed type hypersensitivity (DTH), can also affect implant performance. It is unknown which key patient factors, if any, mediate these adaptive immune responses that potentiate particle/macrophage mediated osteolysis. The objective of this investigation was to determine to what degree known adaptive immune responses to metal implant debris can affect particle-induced osteolysis (PIO); and if this pathomechanism is dependent on: 1) innate immune danger signaling, i.e., NLRP3 inflammasome activity, 2) sex, and/or 3) age. We used an established murine calvaria model of PIO using male and female wild-type C57BL/6 vs. Caspase-1 deficient mice as well as young (12–16 weeks old) vs. aged (18–24 months old) female and male C57BL/6 mice. After induction of metal-DTH, and Cobalt-alloy particle (ASTM F-75, 0.4um median diameter) calvaria challenge, bone resorption was assessed using quantitative micro-computed tomography (micro-CT) analysis and immune responses were assessed by measuring paw inflammation, lymphocyte transformation test (LTT) reactivity and adaptive immune cytokines IFN-gamma and IL-17 (ELISA). Younger aged C57BL/6 female mice exhibited the highest rate and severity of metal sensitivity lymphocyte responses that also translated into higher PIO compared to any other experimental group. The absence of inflammasome/caspase-1 activity significantly suppressed DTH metal-reactivity and osteolysis in both male and female Caspase-1 deficient mice. These murine model results indicate that young female mice are more predisposed to metal-DTH augmented inflammatory responses to wear debris, which is highly influenced by active NLRP3 inflammasome/caspase-1 danger signaling. If these results are clinically meaningful for orthopedic patients, then younger female individuals should be appropriately assessed and followed for DTH derived peri-implant complications.


2009 ◽  
Vol 183 (12) ◽  
pp. 8061-8067 ◽  
Author(s):  
Himanshu Kumar ◽  
Yutaro Kumagai ◽  
Tetsuo Tsuchida ◽  
Paul A. Koenig ◽  
Takashi Satoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document