scholarly journals Metal-induced delayed type hypersensitivity responses potentiate particle induced osteolysis in a sex and age dependent manner

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251885
Author(s):  
Lauryn Samelko ◽  
Marco Caicedo ◽  
Kyron McAllister ◽  
Joshua Jacobs ◽  
Nadim James Hallab

It is widely recognized that innate macrophage immune reactions to implant debris are central to the inflammatory responses that drive biologic implant failure over the long term. Less common, adaptive lymphocyte immune reactions to implant debris, such as delayed type hypersensitivity (DTH), can also affect implant performance. It is unknown which key patient factors, if any, mediate these adaptive immune responses that potentiate particle/macrophage mediated osteolysis. The objective of this investigation was to determine to what degree known adaptive immune responses to metal implant debris can affect particle-induced osteolysis (PIO); and if this pathomechanism is dependent on: 1) innate immune danger signaling, i.e., NLRP3 inflammasome activity, 2) sex, and/or 3) age. We used an established murine calvaria model of PIO using male and female wild-type C57BL/6 vs. Caspase-1 deficient mice as well as young (12–16 weeks old) vs. aged (18–24 months old) female and male C57BL/6 mice. After induction of metal-DTH, and Cobalt-alloy particle (ASTM F-75, 0.4um median diameter) calvaria challenge, bone resorption was assessed using quantitative micro-computed tomography (micro-CT) analysis and immune responses were assessed by measuring paw inflammation, lymphocyte transformation test (LTT) reactivity and adaptive immune cytokines IFN-gamma and IL-17 (ELISA). Younger aged C57BL/6 female mice exhibited the highest rate and severity of metal sensitivity lymphocyte responses that also translated into higher PIO compared to any other experimental group. The absence of inflammasome/caspase-1 activity significantly suppressed DTH metal-reactivity and osteolysis in both male and female Caspase-1 deficient mice. These murine model results indicate that young female mice are more predisposed to metal-DTH augmented inflammatory responses to wear debris, which is highly influenced by active NLRP3 inflammasome/caspase-1 danger signaling. If these results are clinically meaningful for orthopedic patients, then younger female individuals should be appropriately assessed and followed for DTH derived peri-implant complications.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Killen García ◽  
Gisselle Escobar ◽  
Pablo Mendoza ◽  
Caroll Beltran ◽  
Claudio Perez ◽  
...  

Neisseria gonorrhoeae(Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1βsecretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1βin Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1βlevels about ten times compared with unexposed Ngo-infected MDM (P<0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC,P>0.05) and caspase-1 (CASP1,P>0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P>0.01). Notably ATP treatment defined an increase of positive staining for IL-1βwith a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1βsecretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qin Zhao ◽  
Miusi Shi ◽  
Chengcheng Yin ◽  
Zifan Zhao ◽  
Jinglun Zhang ◽  
...  

AbstractThe immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.


2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Lan Kang ◽  
Xiang Zhang ◽  
Liangliang Ji ◽  
Tiantian Kou ◽  
Sinead M. Smith ◽  
...  

Macrophages play pleiotropic roles in maintaining the balance between immune tolerance and inflammatory responses in the gut. Here, we identified transcription factor RBP-J as a crucial regulator of colonic macrophage–mediated immune responses against the enteric pathogen Citrobacter rodentium. In the immune response phase, RBP-J promoted pathogen clearance by enhancing intestinal macrophage-elicited Th17 cell immune responses, which was achieved by maintenance of C/EBPβ-dependent IL-6 production by overcoming miRNA-17∼92–mediated suppressive effects. RBP-J deficiency–associated phenotypes could be genetically corrected by further deleting miRNA-17∼92 in macrophages. In the late phase, noneradicated pathogens in RBP-J KO mice recruited abundant IL-1β–expressing CD64+Ly6C+ colonic macrophages and thereby promoted persistence of ILC3-derived IL-22 to compensate for the impaired innate and adaptive immune responses, leading to ultimate clearance of pathogens. These results demonstrated that colonic macrophage–intrinsic RBP-J dynamically orchestrates intestinal immunity against pathogen infections by interfacing with key immune cells of T and innate lymphoid cell lineages.


2002 ◽  
Vol 22 (14) ◽  
pp. 5173-5181 ◽  
Author(s):  
Thandi M. Onami ◽  
Meei-Yun Lin ◽  
Dawne M. Page ◽  
Shirley A. Reynolds ◽  
Carol D. Katayama ◽  
...  

ABSTRACT Macrophage receptors function in pattern recognition for the induction of innate immunity, in cellular communication to mediate the regulation of adaptive immune responses, and in the clearance of some glycosylated cells or glycoproteins from the circulation. They also function in homeostasis by initiating the engulfment of apoptotic cells. Evidence has suggested that macrophage receptors function to recognize cells that are destined for programmed cell death but not yet overtly apoptotic. We have examined the function of a macrophage receptor specific for unsialylated glycoproteins, known as the mouse macrophage galactose- and N-acetylgalactosamine-specific lectin (mMGL) (Ii et al., J. Biol. Chem. 265:11295-11298, 1990; Sato et al., J. Biochem. [Tokyo] 111:331-336, 1992; Yamamoto et al., Biochemistry 33:8159-8166, 1994). With targeted disruption, we tested whether mMGL is necessary for macrophage function, controlled thymic development, the loss of activated CD8 T cells, and the turnover of red blood cells. Evidence indicates that mMGL may play a nonessential role in several of these macrophage functions. Experiments are presented that indicate the existence of another galactose- and N-acetylgalactosamine-recognizing lectin distinct from mMGL. This may explain the absence of a strong phenotype in mMGL-deficient mice.


2014 ◽  
Vol 11 (5) ◽  
pp. 410-427 ◽  
Author(s):  
Philip V Nguyen ◽  
Jessica K Kafka ◽  
Victor H Ferreira ◽  
Kristy Roth ◽  
Charu Kaushic

Sign in / Sign up

Export Citation Format

Share Document