Faculty Opinions recommendation of Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing.

Author(s):  
Emiliana Borrelli
Cell Reports ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Roger Cachope ◽  
Yolanda Mateo ◽  
Brian N. Mathur ◽  
James Irving ◽  
Hui-Ling Wang ◽  
...  

2020 ◽  
Author(s):  
Avery McGuirt ◽  
Ori Lieberman ◽  
Michael Post ◽  
Irena Pigulevskiy ◽  
David Sulzer

AbstractDynamic changes in motor abilities and motivated behaviors occur during the juvenile and adolescent periods. The striatum is a subcortical nucleus critical for action selection, motor learning and reward processing. Its tonically active cholinergic interneuron (ChI) is an integral regulator of the synaptic activity of other striatal neurons, as well as afferent axonal projections of midbrain dopamine neurons. Thalamic and dopaminergic inputs initiate pauses in ChI firing following salient sensory cues that are extended for several hundred milliseconds by intrinsic regenerative currents. Here, we characterize the electrophysiological and morphological features of ChIs during mouse postnatal development. We demonstrate that ChI spontaneous activity increases with age while the duration of the pause in firing induced by depolarizing inputs decreases during postnatal development. Maturation of ChI activity is driven by two distinct physiological changes: decreased amplitude of the afterhypolarization between P14 and P18 and and increased Ih conductance between the late postnatal period and adulthood. Finally, we uncover postnatal changes in dopamine release properties that are mediated by cholinergic signalling. At P10, striatal dopamine release is diminished compared to the adult, but our data show efficient summation of dopamine relase evoked by multiple grouped stimuli that subsides by P28. Blockade of nictonic acetylcholine receptors enhances release summation in mice older than P28 but has little effect at P10. These data demonstrate a physiological maturation of ChI activity and indicate a reciprocal interaction between the postnatal maturation of striatal ChI and dopamine neurotransmission.Significance StatementMotor skills and motivated behavior regimes develop rapidly during the postnatal period. The functional development of the striatal cholinergic interneuron (ChI), which contributes to these behaviors in adulthood, remains unexplored. In this study, we tracked the ontogeny of spontaneous ChI activity and cellular morphology, as well as the developmental trajectory of ion conductances characteristic to this population. We further report a developmental link between ChI activity and dopamine release, revealing a change in the frequency-dependence of dopamine release during the early postnatal period that is mediated by cholinergic signaling. This study provides evidence that striatal microcircuits are dynamic during the postnatal period and that they undergo coordinated maturation.


Brain ◽  
2020 ◽  
Vol 143 (2) ◽  
pp. 701-710 ◽  
Author(s):  
Alexis E Whitton ◽  
Jenna M Reinen ◽  
Mark Slifstein ◽  
Yuen-Siang Ang ◽  
Patrick J McGrath ◽  
...  

Abstract The efficacy of dopamine agonists in treating major depressive disorder has been hypothesized to stem from effects on ventrostriatal dopamine and reward function. However, an important question is whether dopamine agonists are most beneficial for patients with reward-based deficits. This study evaluated whether measures of reward processing and ventrostriatal dopamine function predicted response to the dopamine agonist, pramipexole (ClinicalTrials.gov Identifier: NCT02033369). Individuals with major depressive disorder (n = 26) and healthy controls (n = 26) (mean ± SD age = 26.5 ± 5.9; 50% female) first underwent assessments of reward learning behaviour and ventrostriatal prediction error signalling (measured using functional MRI). 11C-(+)-PHNO PET before and after oral amphetamine was used to assess ventrostriatal dopamine release. The depressed group then received open-label pramipexole treatment for 6 weeks (0.5 mg/day titrated to a maximum daily dose of 2.5 mg). Symptoms were assessed weekly, and reward learning was reassessed post-treatment. At baseline, relative to controls, the depressed group showed lower reward learning (P = 0.02), a trend towards blunted reward-related prediction error signals (P = 0.07), and a trend towards increased amphetamine-induced dopamine release (P = 0.07). Despite symptom improvements following pramipexole (Cohen’s d ranging from 0.51 to 2.16 across symptom subscales), reward learning did not change after treatment. At a group level, baseline reward learning (P = 0.001) and prediction error signalling (P = 0.004) were both associated with symptom improvement, albeit in a direction opposite to initial predictions: patients with stronger pretreatment reward learning and reward-related prediction error signalling improved most. Baseline D2/3 receptor availability (P = 0.02) and dopamine release (P = 0.05) also predicted improvements in clinical functioning, with lower D2/3 receptor availability and lower dopamine release predicting greater improvements. Although these findings await replication, they suggest that measures of reward-related mesolimbic dopamine function may hold promise for identifying depressed individuals likely to respond favourably to dopaminergic pharmacotherapy.


2017 ◽  
Vol 37 (8) ◽  
pp. 2086-2096 ◽  
Author(s):  
Jordan T. Yorgason ◽  
Douglas M. Zeppenfeld ◽  
John T. Williams

2020 ◽  
Author(s):  
Anthony M. Downs ◽  
Xueliang Fan ◽  
Radhika Kadakia ◽  
Yuping Donsante ◽  
H.A. Jinnah ◽  
...  

ABSTRACTDYT1-TOR1A dystonia is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Paul F Kramer ◽  
Emily L Twedell ◽  
Jung Hoon Shin ◽  
Renshu Zhang ◽  
Zayd M Khaliq

Axons of dopaminergic neurons innervate the striatum where they contribute to movement and reinforcement learning. Past work has shown that striatal GABA tonically inhibits dopamine release, but whether GABA-A receptors directly modulate transmission or act indirectly through circuit elements is unresolved. Here, we use whole-cell and perforated-patch recordings to test for GABA-A receptors on the main dopaminergic neuron axons and branching processes within the striatum of adult mice. Application of GABA depolarized axons, but also decreased the amplitude of axonal spikes, limited propagation and reduced striatal dopamine release. The mechanism of inhibition involved sodium channel inactivation and shunting. Lastly, we show the positive allosteric modulator diazepam enhanced GABA-A currents on dopaminergic axons and directly inhibited release, but also likely acts by reducing excitation from cholinergic interneurons. Thus, we reveal the mechanisms of GABA-A receptor modulation of dopamine release and provide new insights into the actions of benzodiazepines within the striatum.


2021 ◽  
Author(s):  
Jordan T. Yorgason ◽  
Hillary A. Wadsworth ◽  
Elizabeth J. Anderson ◽  
Benjamin M. Williams ◽  
James N. Brundage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document