cholinergic interneuron
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 1)

eNeuro ◽  
2021 ◽  
pp. ENEURO.0196-21.2021
Author(s):  
Samira Ztaou ◽  
Soo Jung Oh ◽  
Sophia Tepler ◽  
Sixtine Fleury ◽  
Miriam Matamales ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6540) ◽  
pp. 345-346
Author(s):  
Anna E. Ingebretson ◽  
Julia C. Lemos

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 907
Author(s):  
Lauren A. Poppi ◽  
Khue Tu Ho-Nguyen ◽  
Anna Shi ◽  
Cynthia T. Daut ◽  
Max A. Tischfield

Cholinergic interneurons are “gatekeepers” for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.


2021 ◽  
pp. JN-RM-0967-20
Author(s):  
Noorya Yasmin Ahmed ◽  
Yadollah Ranjbar-Slamloo ◽  
Alice Shaam Al Abed ◽  
Lingxiao Gao ◽  
Yovina Sontani ◽  
...  

Author(s):  
Rodrigo Manuel Paz ◽  
Cecilia Tubert ◽  
Agostina Monica Stahl ◽  
Yimy Amarillo ◽  
Lorena Rela ◽  
...  

2020 ◽  
Vol 144 ◽  
pp. 105045
Author(s):  
Sushma Gandham ◽  
Yearam Tak ◽  
Bhooma R. Aravamuthan

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Se Joon Choi ◽  
Thong C Ma ◽  
Yunmin Ding ◽  
Timothy Cheung ◽  
Neal Joshi ◽  
...  

Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson’s disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.


2020 ◽  
Author(s):  
Sushma Gandham ◽  
Yearam Tak ◽  
Bhooma R. Aravamuthan

AbstractNeonatal brain injury leading to cerebral palsy (CP) is the most common cause of childhood dystonia, a painful and functionally debilitating movement disorder. Rare monogenic etiologies of dystonia have been associated with striatal cholinergic interneuron (ChI) pathology. However it is unclear whether striatal ChI pathology is also associated with dystonia following neonatal brain injury. We used unbiased stereology to estimate striatal ChI and parvalbumin-positive GABAergic interneuron (PVI) numbers in a rodent model of neonatal brain injury that demonstrates electrophysiological markers of dystonia and spasticity. Striatal ChI numbers are increased following neonatal brain injury while PVI numbers are unchanged. These numbers do not correlate with electrophysiologic measures of dystonia severity. This suggests that striatal ChI pathology, though present, may not be the primary pathophysiologic contributor to dystonia following neonatal brain injury. Increased striatal ChI numbers could instead represent a passenger or protective phenomenon in the setting of dystonic CP.


2020 ◽  
Author(s):  
Avery McGuirt ◽  
Ori Lieberman ◽  
Michael Post ◽  
Irena Pigulevskiy ◽  
David Sulzer

AbstractDynamic changes in motor abilities and motivated behaviors occur during the juvenile and adolescent periods. The striatum is a subcortical nucleus critical for action selection, motor learning and reward processing. Its tonically active cholinergic interneuron (ChI) is an integral regulator of the synaptic activity of other striatal neurons, as well as afferent axonal projections of midbrain dopamine neurons. Thalamic and dopaminergic inputs initiate pauses in ChI firing following salient sensory cues that are extended for several hundred milliseconds by intrinsic regenerative currents. Here, we characterize the electrophysiological and morphological features of ChIs during mouse postnatal development. We demonstrate that ChI spontaneous activity increases with age while the duration of the pause in firing induced by depolarizing inputs decreases during postnatal development. Maturation of ChI activity is driven by two distinct physiological changes: decreased amplitude of the afterhypolarization between P14 and P18 and and increased Ih conductance between the late postnatal period and adulthood. Finally, we uncover postnatal changes in dopamine release properties that are mediated by cholinergic signalling. At P10, striatal dopamine release is diminished compared to the adult, but our data show efficient summation of dopamine relase evoked by multiple grouped stimuli that subsides by P28. Blockade of nictonic acetylcholine receptors enhances release summation in mice older than P28 but has little effect at P10. These data demonstrate a physiological maturation of ChI activity and indicate a reciprocal interaction between the postnatal maturation of striatal ChI and dopamine neurotransmission.Significance StatementMotor skills and motivated behavior regimes develop rapidly during the postnatal period. The functional development of the striatal cholinergic interneuron (ChI), which contributes to these behaviors in adulthood, remains unexplored. In this study, we tracked the ontogeny of spontaneous ChI activity and cellular morphology, as well as the developmental trajectory of ion conductances characteristic to this population. We further report a developmental link between ChI activity and dopamine release, revealing a change in the frequency-dependence of dopamine release during the early postnatal period that is mediated by cholinergic signaling. This study provides evidence that striatal microcircuits are dynamic during the postnatal period and that they undergo coordinated maturation.


2020 ◽  
Author(s):  
Se Joon Choi ◽  
Thong C. Ma ◽  
Yunmin Ding ◽  
Timothy Cheung ◽  
Neal Joshi ◽  
...  

SummaryChanges in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson’s disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes are unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.


Sign in / Sign up

Export Citation Format

Share Document