Faculty Opinions recommendation of Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes.

Author(s):  
Jonathan Bogan
Keyword(s):  
2012 ◽  
Vol 198 (4) ◽  
pp. 545-560 ◽  
Author(s):  
Yu Chen ◽  
Yan Wang ◽  
Jinzhong Zhang ◽  
Yongqiang Deng ◽  
Li Jiang ◽  
...  

Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1963-1972 ◽  
Author(s):  
Jian-Dong Huang ◽  
Valerie Mermall ◽  
Marjorie C Strobel ◽  
Liane B Russell ◽  
Mark S Mooseker ◽  
...  

AbstractWe used an RT-PCR-based sequencing approach to identify the mutations responsible for 17 viable dilute alleles, a mouse-coat-color locus encoding unconventional myosin-VA. Ten of the mutations mapped to the MyoVA tail and are reported here. These mutations represent the first extensive collection of tail mutations reported for any unconventional mammalian myosin. They identify sequences important for tail function and identify domains potentially involved in cargo binding and/or proper folding of the MyoVA tail. Our results also provide support for the notion that different myosin tail isoforms produced by alternative splicing encode important cell-type-specific functions.


2006 ◽  
Vol 17 (11) ◽  
pp. 4720-4735 ◽  
Author(s):  
Alistair N. Hume ◽  
Abul K. Tarafder ◽  
José S. Ramalho ◽  
Elena V. Sviderskaya ◽  
Miguel C. Seabra

Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F–binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.


2004 ◽  
Vol 60 (2) ◽  
pp. 187-196 ◽  
Author(s):  
José R. Sotelo-Silveira ◽  
Aldo Calliari ◽  
Magdalena Cárdenas ◽  
Edward Koenig ◽  
José R. Sotelo

2012 ◽  
Vol 23 (22) ◽  
pp. 4444-4455 ◽  
Author(s):  
Flora Brozzi ◽  
Sophie Lajus ◽  
Frederique Diraison ◽  
Shavanthi Rajatileka ◽  
Katy Hayward ◽  
...  

Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.


Sign in / Sign up

Export Citation Format

Share Document